
A SLAM Method for the Formula Student
Driverless Competition

Luís Afonso Nazaré Correia Lopes

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Dr. Pedro Daniel dos Santos Miraldo
Prof. Pedro Manuel Urbano de Almeida Lima

Examination Committee
Chairperson: Prof. João Fernando Cardoso Silva Sequeira

Supervisor: Dr. Pedro Daniel dos Santos Miraldo
Member of the Committee: Prof. José António Da Cruz Pinto Gaspar

October, 2021

A SLAM Method for the Formula Student Driverless
Competition

Luís Afonso Nazaré Correia Lopes

October, 2021

Dedicated to my grandparents.

Declaration:

I declare that this document is an original work of my own authorship and that it ful-
fills all the requirements of the Code of Conduct and Good Practices of the Universidade
de Lisboa.

Declaração:

Declaro que o presente documento é um trabalho original da minha autoria e que
cumpre todos os requisitos do Código de Conduta e Boas Práticas da Universidade de
Lisboa.

Abstract

The world of autonomous driving has received much attention in recent years, pro-
pelled by the constant pressure from governments and society for safer vehicles and
roads, allied with the technological advances in the fields of computer vision and motion
planning.

In a constant effort to follow the trends of the automotive world, Formula Student
Germany introduced the Driverless class, where prototypes must be able to compete in
a number of different events fully autonomously, with no prior knowledge concerning the
layout of the track.

Simultaneous Localization and Mapping (SLAM) addresses the problem of localizing
a moving agent while simultaneously constructing a map of the environment. SLAM is
widely considered in the literature as one of the most challenging problems regarding
autonomous applications, even more when applied in racing conditions.

This thesis aims to provide a comprehensive review of SLAM algorithms in the
Formula Student Driverless context. Three different algorithms were implemented from
scratch and tested both in simulation and real scenarios. The algorithms consist of two
particle filter approaches and a graph-based one. Furthermore, a new approach to the
data association problem which combines tracking information with traditional methods
is proposed and compared against others commonly used.

The results show that the proposed graph-based pipeline held considerably better re-
sults when compared to the filtering approaches whilst being significantly more efficient.
Moreover, regarding the data association problem, the proposed method also produced
the best results among the other algorithms in study.

Keywords: SLAM, Data Association, Autonomous Driving, Formula Student

vii

viii

Resumo

A área da condução autónoma tem sido alvo de bastante atenção nos últimos anos
devido à constante pressão, por parte das autoridades e sociedade em geral, para veículos
e estradas mais seguros, aliado aos avanços nas áreas da visão por computador e controlo.

Num esforço constante para seguir as tendências do mundo automóvel, a Formula
Student Germany introduziu a classe Driverless, onde os protótipos devem completar um
conjunto de eventos de forma totalmente autónoma sem qualquer conhecimento prévio
da pista.

Simultaneous Localization and Mapping (SLAM) aborda o problema de localizar um
agente em movimento enquanto, simultaneamente, constrói um mapa do ambiente que
o rodeia. SLAM é considerado pela comunidade científica como um dos problemas mais
complexos relativos à condução autónoma, especialmente quando aplicado a ambientes
de corrida.

Esta tese tem por objectivo realizar uma análise comparativa dos métodos de SLAM
mais utilizados no ambiente de Formula Student. Três algoritmos distintos foram imple-
mentados de raiz e testados tanto em simulação como em dados reais. Os algoritmos em
estudo consistem em duas abordagens baseadas em filtros de partículas e outra baseada
em grafos. Para além disso, é ainda proposto um novo método para o problema de data
association, que combina informação de rastreamento com métodos tradicionais.

Os resultados mostram que a implementação baseada em grafos obteve resultados
consideravelmente melhores do que as implementações baseadas em filtros de partículas,
sendo ao mesmo tempo bastante mais eficiente computacionalmente. Relativamente ao
problema de data association, o método proposto, quando comparado com os restantes
métodos em estudo, apresentou também os melhores resultados.

Palavras-chave: SLAM, Data Association, Condução Autónoma, Formula Student

ix

x

Acknowledgements

First, I have to thank my supervisor Dr. Pedro Miraldo for giving me the opportunity
to develop this work and for all the continuous support. Also a word of appreciation to
André and Gonçalo for all the knowledge and help.

Secondly, I have to thank my family. To my Mother and Father, for giving me all the
conditions and support, not only during this thesis, but also throughout this journey in
IST, and more recently FST. To my Sister and Brother, for always being by my side, even
when my mood or patience was not at the highest levels. Finally, to my grandparents,
for teaching me with so many great values, and to whom this thesis is dedicated. I will
be forever thankful.

I also would like to thank my dear Inês, for the love, the kind words, and above
everything, for the patience that always kept me going. Thank you for all the support
in the past six years, without you this journey would have been so much more difficult.

To all my friends that helped me in the long nights of studying and never ending
projects. We had a great time together.

To the entire FST10 team, it was a pleasure working with you all during these tough
and strange times. I could not have asked for a better ending to this journey. I have
learned so much during the past two years, thank you all for putting up with me.

Finally, to the Autonomous Systems department, what a group of incredible guys:
João, Pedro, Francisco, Diogo, Bernardo, Miguel and Ivo. What an incredible adventure
we have experienced together, I am so proud of what we accomplished together. Thank
you for all the good arguments, late night sprints, endless workshop sifts and long testing
days.

A special word of appreciation to Regimento de Artilharia N◦5, in the person of
Col. Vasco António for the testing site, and Sgt.Valente for all the help with the ground
truth maps.

xi

xii

Contents

List of Figures xiv

List of Tables xvi

Acronyms xix

1 Introduction 1
1.1 Formula Student Competition . 2
1.2 Motivation . 5
1.3 Topic Overview . 6

1.3.1 Online SLAM and Full SLAM . 7
1.3.2 Data Association . 9

1.4 Objectives and Achievements . 10
1.5 Thesis Outline . 11

2 Theoretical Background 13
2.1 Mapping and Localization Phases . 13
2.2 SLAM Theoretical Overview . 14
2.3 FastSLAM . 17

2.3.1 FastSLAM 1.0 . 19
2.3.2 FastSLAM 2.0 . 21

2.4 GraphSLAM . 25
2.5 Data Association . 29

2.5.1 Maximum Likelihood and Individual Compatibility 29
2.5.2 Sequential Compatibility Nearest Neighbor 31
2.5.3 Joint Compatibility Branch and Bound 31

xiii

3 System Integration 35
3.1 Vehicle Setup . 35
3.2 SLAM Inputs . 37

3.2.1 Perception Pipeline . 38
3.2.2 State Estimation Pipeline . 40

3.3 Motion Models . 42
3.3.1 Unicycle Model . 42
3.3.2 Kinematic Bicycle Model . 43

3.4 FastSLAM Implementation . 45
3.5 GraphSLAM Implementation . 48
3.6 Data Association Implementation . 51

4 Results 55
4.1 Simulation Results . 57
4.2 Real Scenario Results . 58

4.2.1 Mapping Results . 58
4.2.2 Localization Results . 62
4.2.3 Data Association Results . 63

5 Conclusions 67
5.1 Future Work . 68
5.2 Final Remarks . 68

xiv

List of Figures

1.1 Current state of the art regarding autonomous driving in the social and
competition context. 2

1.2 Formula Student Dynamic Events for the Driverless Class vehicles 4
1.3 Specifications of the cones used in Formula Student Driverless competitions. 5
1.4 SLAM as mapping and localization problem. 7
1.5 Types of formulations possible for the SLAM problem. 8
1.6 Ambiguities in the data association process 10

2.1 Illustration of the probabilistic constraints in the SLAM problem. 15
2.2 Illustration of the covariance matrix maintained by the EKF based SLAM. 16
2.3 Illustration of the measurement model. 18
2.4 Mismatch between proposal and posterior distributions. 22
2.5 Example of GraphSLAM structure representation. 26
2.6 Example of Joint Compatibility Branch and Bound 32

3.1 FST09e team and prototype in Formula Student Germany 2019. 36
3.2 Location and field-of-view of LiDAR and Camera. 37
3.3 Representation of the Autonomous System Pipeline node structure . . . 38
3.4 Perception Pipeline Illustration . 39
3.5 Illustration of LiDAR projection into image plane and cone color patterns 40
3.6 Comparison between AHRS only and EKF velocity estimates 41
3.7 Representation of the Unicycle Kinematic Motion Model. 42
3.8 Representation of the Kinematic Bicycle Model. 44
3.9 Detailed FastSLAM Architecture . 45
3.10 Detailed GraphSLAM Architecture . 48

xv

3.11 Example of the GraphSLAM sparse-graph representation 50
3.12 Example of the Data Association Process 53

4.1 Device used to obtain track ground truth 56
4.2 Simulation results in the 2018 FSG track. 57
4.3 FastSLAM 1.0 maps against ground truth map 60
4.4 FastSLAM 2.0 maps against ground truth map 60
4.5 GraphSLAM maps against ground truth map 60
4.6 FastSLAM 1.0 map RMSE over distance. 61
4.7 FastSLAM 2.0 map RMSE over distance. 61
4.8 GraphSLAM map RMSE over distance. 61
4.9 Comparison of the localization results against raw odometry data 62
4.10 Accuracy of the data association methods in real data 64

5.1 Autonomous Systems department after the first fully autonomous ride. . 69

xvi

List of Tables

4.1 SLAM Parameters . 56
4.2 Total RMSE of each implementation per track 59
4.3 Accuracy of the different data association methods 63

xvii

xviii

Acronyms

ADAS Advanced Driver Assistance Systems. 1

AHRS Attitude and Heading Reference System. 36

EBS Emergency Brake System. 3, 37

EKF Extended Kalman Filter. 15

FSAE Formula Society of Automotive Engineers. 3

FSG Formula Student Germany. 2, 35

FST Formula Student Lisboa. 5

GPS Global Position System. 6, 36

HV High Voltage. 35

IC Individual Compatibility. 9, 30

ICP Iterative Closest Point. 51

IMU Inertial Monitoring Unit. 36

JC Joint Compatibility. 9, 31

LiDAR Light Detection and Ranging. 35

MCL Monte Carlo Localization. 19, 47

xix

ML Maximum Likelihood. 9, 29

MPC Model Predictive Control. 6

RANSAC Random Sample Consensus. 38

RES Remote Emergency System. 3, 37

RMSE Root Mean Squared Error. 58

ROS Robot Operating System. 37

SCNN Sequential Compatibility Nearest Neighbor. 9, 30

SLAM Simultaneous Localization and Mapping. 5, 6

xx

Chapter 1

Introduction

The world of autonomous driving has received much attention in recent years, pro-
pelled by the constant pressure from governments and society for safer vehicles and roads
and the ever-growing availability of sensors, like cameras and radars, in the current days’
vehicles [1].

Although in a decreasing trend, it is estimated that 40 000 people lose their lives in
road accidents each year on European roads, with the cause of 90% of those accidents
being attributed to human error. To counteract this, and since higher levels of autonomy
have the potential to drastically reduce dangerous driving behaviors, vehicle manufac-
turers are introducing at a rapid pace in-vehicle safety features and Advanced Driving
Assistance Systems (ADAS). The latter combined with the technological advances in the
fields of computer vision and motion planning, leads us to the state of the art regard-
ing autonomous driving, with several manufacturers already testing their prototypes in
real-life scenarios without any human interference, as presented in Figure 1.1. Exam-
ples include the self-driving taxi in Figure 1.1(a) developed by Waymo, and Cruise in
Figure 1.1(b), that use primary LiDAR’s to reach Level 4 autonomy, meaning that they
do not require any human intervention during the vehicle’s operation nor require the
vehicles to be equipped with a steering wheel or pedals. On the other hand, a crucial
aspect of any autonomous application is the ability to operate in the limits of handling,
e.g. by performing emergency/avoidance maneuvers, and that is where racing comes in
hand. Autonomous racing competitions such as Roborace [2] and Formula Student, in
Figures 1.1(c) and 1.1(d), present a unique opportunity to develop, test and validate
new technologies under challenging conditions.

1

1.1. FORMULA STUDENT COMPETITION

(a) Waymo (Google Company) self-driving taxi
in the streets of Phoenix, Arizona;

(b) Cruise autonomous prototype was recently
tested in the streets of San Francisco without
backup driver;

(c) Roborace a worldwide competition for au-
tonomous driving electrical prototypes;

(d) Formula Student Driverless, a worldwide compe-
tition for engineering students;

Figure 1.1: Current state of the art regarding autonomous driving in the social context
in (a) and (b) and in the competition context (c) and (d)

1.1 Formula Student Competition

The Formula Student competition is Europe’s most established educational engineer-
ing competition that challenges engineering students from the best universities around
the world to design, build and test electric or combustion race cars according to a strict
set of rules [3] and then compete against other teams in competitions organized all over
the world. Much more than solely racing, Formula Student being an engineering compe-
tition, means that the fastest car does not necessarily win, but rather the team with the
best overall package, both in terms of design, construction, performance and finances.

2

CHAPTER 1. INTRODUCTION

In a constant effort to follow the trends of the automotive world, in 2017, one of the
most important competition organizers, Formula Student Germany (FSG), introduced a
new class of vehicles, the Driverless class. In this class, the prototypes must be able to
compete in a number of different events fully autonomously, with no human intervention
and with no prior knowledge concerning the layout of the track.

The competitions take place in famous racetracks around the world and follow a
strict set of regulations established by the Formula Society of Automotive Engineers
(FSAE) that must be met by every participating prototype before it can race, in an
event called technical inspection. In this event, all the safety aspects related to the
mechanical, electrical and autonomous characteristics of the prototype are evaluated
and determine whether it is safe for competing. Having passed the technical inspection,
the competitions are divided into two sets of events: static events and dynamic events.
The static events evaluate the technical aspects related to the design, conception and
sustainability of the prototype, and include an Engineering Design event, Cost and
Manufacturing and a Business Plan Presentation where the car concept inserted in a
profitable company project is presented to a board of judges/investors. In the dynamic
events is where the prototypes show their actual racing capabilities and comprise a total
of 5 events, as shown in Figure 1.2:

• Skid Pad (1.2(a)): the car must follow a track delimited by two pairs of con-
centric circles in an eight pattern figure;

• Acceleration (1.2(b)): the car must follow a straight course of 75 meters in
length;

• Autocross (1.2(c)): the car must complete one lap to an unknown 200 to 500
meters long track composed of several corners and straights;

• Trackdrive (1.2(d)): the car must complete ten consecutive laps around the
same track used in autocross;

• Efficiency: a ponderation between the energy spent in the trackdrive event and
the elapsed time;

As shown in Figure 1.2, for the DV class vehicles the track boundaries are delimited
by blue cones on the left and yellow cones on the right, small orange cones delimit

3

1.1. FORMULA STUDENT COMPETITION

(a) Skid Pad Event; (b) Acceleration Event;

(c) Autocross Event; (d) Trackdrive Event;

Figure 1.2: Formula Student Dynamic Events for the Driverless Class vehicles. Figures
obtained from [4].

stopping zones and big orange cones mark timekeeping zones. The shape, dimensions
and color pattern of these cones must always be the same, as shown in Figure 1.3, and
are regulated by the FSG rules [3]. Since the layout of the track is unknown, in order
to safely navigate through the unknown environment the prototype must identify the
cones’ position and color using the data retrieved from the available perception sensors.
Having detected the cones that delimit the track, the prototype then needs to compute a
valid path between the track boundaries, comprising the path planning pipeline. Finally,
in order to navigate through the track using the computed path one needs to determine
a speed target and a steering input, which is performed by the control pipeline. During

4

CHAPTER 1. INTRODUCTION

dynamic events, the only way of communication with the vehicle is via the Remote
Emergency System (RES), responsible for starting by sending the Go Signal or stopping
in case of emergency by deploying the Emergency Brake System (EBS).

Figure 1.3: Specifications of the cones used in Formula Student Driverless competitions.
Figure taken from [4].

1.2 Motivation

The Formula Student Lisboa team (FST), from Instituto Superior Técnico, has been
developing prototypes for this competition since 2001, with ten prototypes developed so
far and proven results in the most prestigious competitions of Europe. The team decided
to embrace this new challenge and adapt the previous prototype (FST09e) to be fully
autonomous and compete in the Driverless class in the summer of 2020. Initially com-
posed of only eight students from various engineering courses, we developed a complete
autonomous pipeline [5], comprising perception, estimation and control pipelines.

Due to the COVID-19 pandemic that plagued the world, the competitions did not
take place, but an opportunity for extensive testing emerged highlighting some problems,
which is to be expected since this was the team’s first year developing autonomous
prototypes, even though the pipelines were thoroughly tested in simulation and using
synthetic data.

A key part when dealing with any kind of autonomous driving problem is being able
to localize the vehicle on a given map, or, in the order hand, in case no map is available,
construct a map of the environment given the data retrieved from the sensors and loca-
tion of the vehicle. This being said, a chicken-or-egg like problem arises when neither a

5

1.3. TOPIC OVERVIEW

map is available or the localization of the vehicle is known, since both vehicle’s motion
and observation models are subject to noise, the mapping problem necessarily induces a
localization problem. This problem is formally known as Simultaneous Localization and
Mapping (SLAM), and tackles the problem of constructing a map whilst simultaneously
localizing the agent within it [6]. This problem is widely considered in the literature as
one of the most difficult [7] and at the same time essential for truly autonomous vehicles,
and can become particularly overwhelming in racing conditions due to the higher speeds
requiring very efficient algorithms running on low-level architectures with limited power
consumption.

While the prototype is navigating through the unknown track, in parallel with the
pipeline [5] described at the end of Section 1.1, a SLAM algorithm is also running in
order to construct a map of the environment. This map is particularly useful for the
trackdrive event since having an accurate representation of the track is a key requirement
for algorithms like Model Predictive Control (MPC) [8] which exploit both the limits of
the car and the track by optimizing the speed and trajectory, rather than depending only
on the current observations for computing the best path to follow. Additionally, several
SLAM techniques can easily be converted to localization-only algorithms, a feature that
can be particularly useful in some events that will be discussed in Section 2.1.

The previous SLAM implementation within the team did not held satisfactory results
both in terms of mapping and localization capabilities. To overcome this limitation
an extensive research and testing of different SLAM algorithms was conducted, which
resulted in the implementation from scratch of two types of SLAM approaches. The
first one being an improved version of the previous pipeline and the second a graph-
based approach where a new method for localization was proposed along with a different
method for data association.

1.3 Topic Overview

Simultaneous Localization and Mapping (SLAM) is an essential capability for any
mobile robot exploring an unknown environment. SLAM addresses the problem of a
robot moving through an environment of which no a priori map is available. The
aim of SLAM is to acquire a map of the environment, using a moving robot, while
simultaneously localizing the robot relative to this map [9].

6

CHAPTER 1. INTRODUCTION

Figure 1.4: The duality of the SLAM problem, both the path (white circles) and the
position of the landmarks (yellow stars) are unknown and both are subject to uncertainty
(red ellipses) that grows over time. This means that the mapping problem necessarily
induces a localization problem because observations are corrupted by error in the pose
estimate.

As the robot moves, it collects odometry measurements, for example, from GPS or
wheel encoders, however, these measurements are subject to error, the so called motion
noise. In addition, the robot also collects information of its surroundings in order to
construct a map, which not only are subject to error by the sensor measurement itself
(observation noise), but also because they are corrupted by error in the pose estimate.
However, unlike observation noise, the error in the pose estimate will have a systematic
effect on the error in the map, or put into other terms, error in the robot’s path correlates
errors in the map, as stated in [10]. As a result, the true map cannot be estimated
without also estimating the true path of the robot, a relationship that was first identified
in [11] and evidenced in Figure 1.4.

Since then several approaches to solve the SLAM problem have emerged and var-
ious problems identified, one of them being the data association problem that will be
introduced in Section 1.3.2 and further discussed in Section 2.5.

1.3.1 Online SLAM and Full SLAM

From a probabilistic point of view, there are two ways in which the SLAM prob-
lem can be formulated into, both of them being equally relevant in terms of practical
importance [12].

The first one is formally known as online SLAM problem, and tackles the problem of

7

1.3. TOPIC OVERVIEW

(a) Online SLAM problem graphical problem formu-
lation;

(b) Full SLAM problem graphical problem for-
mulation;

Figure 1.5: Types of formulations possible for the SLAM problem. As the robot moves
from xt−1 to xt as a result of the control command ut−1, observes the landmark m
through the observation zt−1. Online slam approaches, in (a), seek to estimate the
current position of the robot xt+1 along with the position of the landmark m. Whereas
full slam approaches, in (b), seek to estimate the most recent robot position along with
the collection of the previous pose estimates, as well as the position of the landmark m.

estimating the posterior over the current pose along with the position of the landmarks,
forming the map, according to:

p(xt,m|z1:t, u1:t). (1.1)

This problem is called the online SLAM problem, in Figure 1.5(a), because it only
seeks to estimate the variables at the present instant in time t, and therefore many
of the algorithms used for solving the online SLAM problem are incremental, meaning
they discard past measurements and controls as they are processed [12]. Typically, these
approaches are called filtering approaches, meaning that the estimate is augmented as
new measurements become available and it is exactly to highlight their incremental
nature that they are referred to as online SLAM methods [13].

The second one, contrarily to the first one, seeks to estimate not only the posterior
over the current pose, but also the posterior over the rest of the path x1:t along with the
map, as in:

p(x1:t,m|z1:t, u1:t). (1.2)

These approaches address the full SLAM problem, in Figure 1.5(b), and they typically

8

CHAPTER 1. INTRODUCTION

rely on least-square error minimization techniques, hence being also known as smoothing
approaches to the SLAM problem [13].

Regardless of the formulation chosen (online or full), estimating the full posterior
has a big importance since it captures all there is to know about the map and pose or
path. However, computing the full posterior was unfeasible for a number of years due
to the complexity and dimensionality of the state variables, which makes it impossible
to compute probability distribution in real-time without making approximations [12].

1.3.2 Data Association

As stated previously, although throughout the years several achievements have been
made regarding the SLAM problem, SLAM still remains one of the most difficult prob-
lems when it comes to an autonomous vehicle moving through an unknown environment.
One of the topics that make the SLAM problem hard to solve is the data association
problem, a problem that arises from the fact that the mapping between the observations
and features in the map is unknown and errors in the data association process can lead
to catastrophic failures as the divergence of the whole SLAM algorithm [14].

In many real-world problems, landmarks are not identifiable and the total number
of landmarks cannot be obtained trivially. The data association process consists of
determining, from a set of observations, the ones that correspond to new landmarks and
the ones that correspond to already observed landmarks. The data association problem
is imposed by the fact that both measurements, pose and landmark locations are subject
to uncertainty [15], see Figure 1.6.

The measurements uncertainty, in Figure 1.6(a), leads to data association ambigu-
ity since the larger the uncertainty associated to the measurement is, the larger the
number of possible landmark assignments that need to be considered. In a similar way,
the uncertainty associated to the pose, in Figure 1.6(b), creates ambiguity due to the
fact that the agent is uncertain about its location (position and orientation). Finally,
landmark uncertainty, in Figure 1.6(c), leads to assignment ambiguity, since it allows,
in a probabilistic sense, for a measurement to be associated with multiple landmarks.

The premise for feature-based data association is that credible features can be ex-
tracted from the environment by the sensors. The latter can be particularly difficult in
unknown environments and due to the intrinsic uncertainty of the sensors, making, to

9

1.4. OBJECTIVES AND ACHIEVEMENTS

(a) Ambiguity caused by mea-
surement uncertainty;

(b) Ambiguity caused by pose
uncertainty;

(c) Ambiguity caused by land-
mark uncertainty;

Figure 1.6: Ambiguities in the data association process caused by the inherent noise
present in measurements, pose estimate and landmark position estimate. Figure ob-
tained from [15].

this day, feature-based data association a difficult research problem [16], with several al-
gorithms being proposed in the literature, such as Maximum Likelihood (ML) [17], Indi-
vidual Compatibility (IC) [15], Sequential Compatibility Nearest Neighbor (SCNN) [14]
and Joint Compatibility (JC) [18]. In Section 2.5 these methods will be discussed in-
depth, implemented and the results compared in different SLAM approaches.

1.4 Objectives and Achievements

Keeping in mind the overview presented above, the following objectives are defined:

• Improve the data association process regardless of the SLAM algorithm in use by
combining standard data association techniques with tracking information;

• Implement two state-of-the-art feature-based SLAM approaches (FastSLAM 2.0
and GraphSLAM);

• Compare the accuracy and performance of the implementations both using stan-
dard data association techniques and using the proposed data association method
against each other and the original implementation;

10

CHAPTER 1. INTRODUCTION

• Implement a localization only algorithm based on GraphSLAM that allows for a
quick transition into a localization only mode in case a map is already available;

• Compare the localization capabilities of both FastSLAM 2.0 and GraphSLAM
against each other and the original implementation;

Such objectives were defined with the main goal of empowering the FST team with
knowledge regarding available SLAM techniques and an algorithm capable of handling
all the scenarios in which it is required in the upcoming competitions.

The major achievement with this thesis is, undoubtedly, a SLAM module that pro-
vides accurate enough maps in the Formula Student competition context, something
that the previous implementation was not able to achieve. The current pipeline not only
fulfills the current requirements of the team, but also is faster, modular and more ro-
bust overall using the proposed data association method. Lastly, by comparing different
SLAM approaches applied to the Driverless competition several limitations, given our
current setup, were identified. Knowing these kinds of limitations is very important for
the future of the Autonomous Systems department and will greatly contribute for the
development of more complex algorithms, using different sensors combinations, which
will culminate in a much faster, robust and safer car.

1.5 Thesis Outline

In chapter 2 a background on the Formula Student Competition with focus on the
Driverless class is presented. Furthermore, a theoretical overview of the SLAM problem
in general and the algorithms to be studied in particular is provided. Finally, an overview
of the data association methods in use is presented.

chapter 3 presents the vehicle setup along with the algorithms used in both perception
and state estimation pipelines. Additionally, the key particularities and changes that had
to be made to the original algorithms in order for them to work in the Formula Student
environment are discussed, including the new data association method proposed and the
localization only algorithm based on GraphSLAM.

Chapter 4 shows the performance of the algorithms in terms of computational time,
data association accuracy and overall map accuracy at different speed profiles. These
results are divided into simulation a real scenario results.

11

1.5. THESIS OUTLINE

In chapter 5, conclusions about the developed work are given along with a track of
the fulfilled objectives and suggestions for future work.

12

Chapter 2

Theoretical Background

In this chapter a theoretical background on SLAM is presented by splitting the
problem into two separate ones, a mapping problem and a localization problem, as well as
an explanation on why both of them are important in the Formula Student competition
context.

Finally, a theoretical formulation of one of the most common online SLAM ap-
proaches based on a particle filter proposed in [19], the FastSLAM algorithm is pre-
sented in Section 2.3, along with one of the state-of-the-art approaches to the full SLAM
problem, presented in Section 2.4, via a graph-based formulation, the GraphSLAM al-
gorithm, initially proposed in [20].

2.1 Mapping and Localization Phases

As introduced in Section 1.1, the track where the autocross and trackdrive event
takes place is previously unknown and since the landmarks present in the environment
are of similar appearance and can only be distinguished by their position and color,
a SLAM algorithm that allows for probabilistic landmark incorporation is required.
Furthermore, errors in the mapping process during the autocross event are unforeseen
and so, the algorithm must not only be able to run in real-time, but also transition to
a localization phase when loop closure is detected in the event of the map has to be
acquired during the trackdrive event.

Having an algorithm that can quickly transition to a localization-only method is par-
ticularly useful not only because it eliminates the necessity of having another algorithm

13

2.2. SLAM THEORETICAL OVERVIEW

especially dedicated to the localization side of things, but also because the track layout
for the skidpad is known beforehand. This being said, by having this duality of modes
in the SLAM, the skidpad event can be completed by only providing a previously built
map to the SLAM algorithm and only make use of its localization capabilities.

2.2 SLAM Theoretical Overview

As stated in Section 1.3, it is not possible to estimate the map without also estimating
the location of the robot, a relationship that was first identified by [11] in their seminal
paper on SLAM in 1986, and first implemented by [21].

In a typical SLAM problem, two types of information are available to the robot at a
given moment in time: controls and observations. Controls can be taught as predictions
of the robot’s motion, which are subject to noise and, in a similar way, observations are
noisy measurements of the robot’s environment. Since both controls and observations
are subject to noise, and this noise can be modeled, then they can be taught as prob-
abilistic constraints, in Figure 2.1, where controls define a probabilistic constraint over
two consecutive poses and observations constrain relative transformations between the
robot and features in the map [17].

One of the possible ways to approach SLAM, would be to estimate the most likely
pose and map using the complete set of controls and observations acquired until time t,
formally known as solving the full SLAM problem as described in Section 1.3.1. These
kinds of approaches to the SLAM problem, although very powerful, were discarded
for several years due to the complexity of solving such problem by means of standard
techniques, posed by the constraints which grow without bond over time [9], and was
only possible due to the advances in the fields of sparse linear algebra [13]. An example
of this approach will be discussed in detail in Section 2.4.

Another solution for the SLAM problem would be to estimate the posterior proba-
bility distribution over all possible maps m and robot poses st, conditioned to the full
set of controls ut and observations zt as described in (1.1). This distribution is referred
to as the SLAM posterior [17, 9]. Even though it could appear to be more difficult to
estimate the latter, than the full posterior, if we model the way the world evolves by
means of some simple assumptions it is possible to estimate the posterior with several
advantages over the solutions that consider only the most likely state. This is justifiable

14

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Illustration of the probabilistic constraints on the pose of the robot and
features of the environment. The robot moves from s1 to s2 by input of the control u2,
forming a pose constraint. When in s2 the robot observes the landmark θ2 by making the
measurement z2, which in turn establishes a pose-landmark constraint. Figure obtained
from [19].

by the fact that considering a distribution of possible solutions leads to a more robust
algorithm in noisy environments [6].

The most common approach to the SLAM problem uses an Extended Kalman Filter
(EKF) [22] for estimating the posterior distribution over the map and robot’s pose [11].
This approach represents the map and pose estimate by means of a high-dimensional
Gaussian. The off-diagonal entries of this multivariate Gaussian represent the correlation
discussed earlier between errors in the robot’s pose and features in the map, as shown
in Figure 2.2. This approach allows to accommodate the nature of error in the map, as
stated in [19], however, it has two big drawbacks.

The first drawback is the computational complexity, maintaining a multivariate
Gaussian requires time and memory quadratic in the number of features in the map,
limiting its application to relatively small maps and/or with a small number of fea-
tures. This quadratic complexity is a consequence of the Gaussian representation in
which the EKF is based. The uncertainty of the SLAM posterior is represented by a
covariance matrix that reflects the correlations between all possible pairs of state vari-
ables, and consequently, the memory required to store the information of this matrix
grows quadratically with the number of features in the map. Since all the correlations
between pairs of state variables are maintained, incorporating a new sensor observation

15

2.2. SLAM THEORETICAL OVERVIEW

Figure 2.2: Illustration of the covariance matrix maintained by the EKF based SLAM,
here represented as a correlation matrix. The darker the matrix entry, the higher the
correlation between the pair of state variables. Figure obtained from [9].

requires performing an operation on every entry of the covariance matrix [6]. Several
workarounds of this quadratic complexity have been proposed [23, 24, 25], where the ba-
sic idea is to decompose the problem of building a large map into a collection of smaller
maps, which can then be updated efficiently.

The second drawback, and unequivocally more important, is related to the data as-
sociation problem, introduced in Section 1.3.2. Different data association hypotheses
necessarily induce multiple and different maps, this multi-modality cannot be repre-
sented using Gaussians. The standard approach to the data association problem in
EKF is to assign an observation to a landmark based on the maximum likelihood rule,
but since the EKF has no way of representing uncertainty over data associations, the
effect of incorporating the wrong data association cannot be undone. Several data asso-
ciation errors will cause the filter to diverge [6]. Albeit other data associations methods
are available, as the ones that will be discussed in Section 2.5, however, they do not
address the fact that the EKF only considers one data association hypothesis per time
step, besides the fact that they induct complexity to the algorithm and, due to the
nature of the EKF, make it impossible to use in real time [9].

Bearing in mind the limitations imposed by the EKF approach, a new family of
methods based on particle filters together with EKF’s for estimation of the landmark
locations was proposed by [19], and will be discussed further in detail in Section 2.3.

16

CHAPTER 2. THEORETICAL BACKGROUND

2.3 FastSLAM

Particle filters [26] are particularly useful when dealing with SLAM problems because
they can approximate arbitrarily complex probability distributions, whereas the EKF
approaches are limited to Gaussian approximations at all levels of uncertainty [15].
Besides, particle filters are robust to non-linearities in both motion and measurement
models, since no linearization is required in the propagation of the state uncertainty. It
is inherently carried along with the distribution of the particles. The main drawback of
the particle filters is the problem of scalability for high dimensional spaces due to the
exponential time complexity of the implementation, a problem that was overcome with
the introduction of the Rao-Blackwellized particle filter [27].

The main advantage of the particle filter over the EKF approach is to allow for
multi-hypothesis data association, since the posterior is represented by multiple parti-
cles. Therefore, particle filters enable the data association to be done on a per-particle
instead of on a per-filter basis, meaning that different particles may have different fea-
tures correspondences or even different number of landmarks in their maps. The multi-
hypothesis data association results in more robust algorithms when it comes to data
association errors, since particles with wrong data associations are likely to disappear in
the resampling process [6].

Hereinafter the SLAM problem will be formally described as a collection of N fea-
tures, each of them denoted as θn, which together comprise the map m. The vehicle
pose, comprising the vehicle’s two-dimensional Cartesian coordinates along with its an-
gular orientation is defined in discrete time as st and the complete path of the vehicle
up to time t as st. Additionally, in order to construct a map, the vehicle can sense.
These measurements encode information concerning the range and bearing to a nearby
landmark, as shown in Figure 2.3. In the name of simplicity and for the sake of this
theoretical formulation, a single known landmark will be assumed to be observed at any
given instant in time. It should be noticed that this is a matter of convenience and
does not imply any loss of generality, since multiple observations can be incorporated
sequentially and the data association problem will be tackled in Section 2.5.

At the core of SLAM there is a probabilistic law that describes the process according
to which measurements are acquired, the measurement model as described in:

p(zt|st, θnt, nt) = g(θnt, st) + εt. (2.1)

17

2.3. FASTSLAM

Figure 2.3: Illustration of vehicle observing a range r and a bearing ϕ to a nearby
landmark. Figure obtained from [19].

The measurement model is conditioned to the vehicle’s pose st, the identity of the
landmark nt and the corresponding feature θnt. This probability is a function of g, non-
linear in the sense that the range and bearing are obtained by trigonometric relations,
plus a distortion by noise modeled as εt with zero mean and covariance Rt.

As stated earlier, the second input to the SLAM problem are the controls of the ve-
hicle, denoted as ut. Similarly to the measurement model, also the controls are modelled
as a probabilistic law that describes the evolution of the poses according to:

p(st|ut, st−1) = h(ut, st−1) + δt , (2.2)

the motion model.
The motion model describes the current pose as a function of h, given the previous

pose and control command, perturbed by Gaussian noise δt with zero mean and covari-
ance Pt. As it was the case with the measurement model, function h is also non-linear
with several methods being discussed in Section 3.3.

FastSLAM [10] exploits a property of the SLAM problem pointed out in [28], that
concerns the fact that feature estimates are conditionally independent given the robot
path meaning that the correlations in the uncertainty of features in the map only arise
from the uncertainty associated to the pose. The latter means that if the true path of the
vehicle was known, then the error in the landmarks estimates would be independent from
each other. This allows for the posterior over the possible maps and features in (1.2) to
be represented in a factored way [10]. FastSLAM implements this factored representation
by using a particle filter for estimating the path, which means that conditioned to each

18

CHAPTER 2. THEORETICAL BACKGROUND

particle the individual map errors are independent, hence the factorization into separate
mapping problems, one for each error. In this approach each particle possesses N EKF
for estimating the N landmark locations conditioned to the path estimate. The posterior
in (1.2) can be converted into the Bayes Filter equation by making use of the Bayes Rule:

p(st,m|zt, ut, nt) = η p(zt|st, θnt, nt)
∫
p(st|st−1, ut)p(st−1,m|zt−1, ut−1, nt−1) dst−1 ,

(2.3)
where η is just a normalization constant.

The Bayes filter in (2.3) is equivalent to the Kalman Filter when both g and h are lin-
ear, whereas the EKF allows for non-linear g and h by obtaining a linear approximations
through the first order Taylor expansion.

By exploiting the conditional independence property of SLAM, one can rewrite (2.3)
in a factorized form:

p(st,m|zt, ut, nt) = p(st|zt, ut, nt)
∏

p(θn|st, zt, nt). (2.4)

In (2.4) is evident the separation of the SLAM problem into N+1 recursive problems,
one over the vehicle’s path p(st|zt, ut, nt), and N separate landmark estimation problems
p(θn|st, zt, nt). It should be noticed that although this is factored representation of the
posterior, it is exact and not just a general approximation [17]. Following a typical
Dynamic Bayes Network (DBN) terminology, from (2.4) it is clear that this approach to
the SLAM problem d-separates the individual feature estimation problems by rendering
them independent of each other [9] and that knowledge concerning the location of a given
landmark will not give or contribute with any information relatively to the location of
the remaining features in the map.

2.3.1 FastSLAM 1.0

The FastSLAM [10] algorithm divides the SLAM problem into two separate ones.
A localization problem using a particle filter, where each particle has its own N land-
mark estimation problems conditioned to the path estimate that compose the mapping
problem.

The particle filter is used for estimating the path posterior p(st|zt, ut, nt) in (2.4)
using a similar filter to the one used in the Monte Carlo Localization MCL [29], by
maintaining a set of particles St that represent the posterior at each point in time,

19

2.3. FASTSLAM

where each particle st,[m] ∈ St represents a belief of the vehicle’s path. The superscript
notation [m] is used to refer to the m-th particle in the particle set.

The particle set St is incrementally computed from the previous set St−1, a control ut
and a measurement zt. First, each particle st,[m] ∈ St−1 is used to generate a probabilistic
guess of the robot’s pose at time t according to:

s
[m]
t ∼ p(st|ut, s[m]

t−1) , (2.5)

obtained by sampling from the probabilistic motion model in (2.2).
Under the asymptotically correct assumption that the set of particles in St−1 is

distributed according to p(st−1|zt−1, ut−1, nt−1), the temporary particle set comprising
the new estimate along with the previous path st−1,[m] is also distributed according to
p(st|zt−1, ut, nt−1) and is referred as the proposal distribution.

After generating all the M particles, according to (2.5), the new particle set St is
obtained by sampling, from the temporary particle set, M particles st,[m] with replace-
ment and a probability proportional to the importance factor w[m]

t , which is calculated
according to:

w
[m]
t =

target distribution

proposal distribution
=

p(st,[m] | zt, ut, nt)
p(st,[m] | zt−1, ut, nt−1)

. (2.6)

It should be noticed that this quantity can only be computed in closed form because
the conditional landmark location estimates p(θn|st, zt, nt) in (2.4) are represented using
Kalman Filters. From (2.4) it is obvious that since this estimate is conditioned to a robot
pose, all the Kalman Filters are attached to an individual particle pose in the sample
set St, comprising the full posterior over paths and landmark positions according to:

St =
{
st, [m], µ

[m]
1 ,Σ

[m]
1 , · · · , µ[m]

k ,Σ
[m]
k

}
m
, (2.7)

where µ[m]
i ∈ R2 and Σ

[m]
i ∈ R2×2 are the mean and covariance of the Gaussian repre-

senting the i-th landmark θi, attached to the m-th particle.
To obtain the posterior over the i-th landmark θi it is only required knowledge

whether the landmark was already observed or not. If not then the Gaussian is left
unchanged, otherwise an update is done through an EKF, by performing a linearization
of the observation model in (2.1) according to:

20

CHAPTER 2. THEORETICAL BACKGROUND

Gθ = 5θnt
g(θnt , st)

∣∣∣∣
st=ŝ

[m]
t ; θnt=θ̂

[m]
nt

, (2.8)

where 5θnt
represents the Jacobian of the measurement model with respect to the

landmark location θnt .
The posterior over the landmark mean and covariance can then obtained using the

standard EKF update equations [22]:

Kt = Σ
[m]
nt, t−1G

T
θnt
Q

[m]−1
t

µ
[m]
nt, t = µ

[m]
nt, t−1 +Kt (zt − ẑt)

Σ
[m]
nt, t = (I −KtGθnt

)Σ
[m]
nt, t−1 ,

(2.9)

where Q[m]
t is the innovation covariance matrix defined by:

Q
[m]
t = Rt +GθΣ

[m]
nt, t−1G

T
θ (2.10)

The key characteristic of the FastSLAM use of the EKF is that the update is per-
formed to a Gaussian of just two dimensions since each landmark has its separate EKF,
instead of the typical EKF-based SLAM which requires maintaining a covariance matrix
that comprises the pose estimate along with the location of all the landmarks. This al-
lows the update to be performed in constant time, instead of the quadratic time required
by the EKF, which in the end leads to better scalability.

Although FastSLAM 1.0 opened the door for applying SLAM techniques to environ-
ments with more than a few hundred features, it also came with its drawbacks, such
as the number of particles required for convergence. This lead to a refinement in the
algorithm with a new proposal distribution being suggested, which in turn resulted in
a much more accurate and robust algorithm that will be presented in Section 2.3.2,
FastSLAM 2.0.

2.3.2 FastSLAM 2.0

The FastSLAM algorithm proposed in 2.3.1 leads to efficient scaling and robust
data association, requiring only O(NM) in terms of memory, whereas the update step
requires O(M log N), even with unknown data association. However, it also has its
drawbacks associated to its particle filter nature. One is the fact that the performance

21

2.3. FASTSLAM

(a) (b)

Figure 2.4: Mismatch between proposal and posterior distributions. All the particles
outside the ellipse in (a) will receive negligible probability, while the remaining ones
inside the ellipse in (b) will be replicated multiple times in the resampling process.
Figure obtained from [17].

of the algorithm will degrade when the motion of the vehicle is noisy relative to the
observations, a typical problem since most mobile robots have high values of control
noise but relatively accurate sensors, causing the proposal distribution to be poorly
matched with the posterior, as Figure 2.4 shows. The second is the number of particles
required for convergence, although this value is unknown it is suspected, in the worst
case, to be exponentially proportional to the size of the map [9].

In this section a new version of the FastSLAM [30] algorithm that incorporates into
the proposal distribution not only the importance, but also the current observations in
order to obtain a better posterior will be presented. This new version of FastSLAM also
proves the convergence of the algorithm for linear SLAM problems, even for a single
particle.

In regular FastSLAM, the pose s[m]
t is sampled from (2.2) according to motion com-

mand ut, not taking into account the measurement zt. Instead, this measurement is only
incorporated in the resampling process in (2.6). This approach can be troublesome when
the motion model is noisy relative to the measurement model, causing the sampled poses
to fall into areas of low measurement likelihood (see Figure 2.4(a)), and subsequently
disappearing (see Figure 2.4(b)) in the resampling process with high probability. As the

22

CHAPTER 2. THEORETICAL BACKGROUND

observations become more accurate, fewer unique samples will survive each update step,
eventually causing the filter to diverge [17].

FastSLAM 2.0 implements the idea that poses are sampled under the consideration
of both the motion ut and the measurement zt, according to:

s
[m]
t ∼ p(st|st−1,[m], ut, zt, nt) , (2.11)

which explicitly incorporates the most recent sensor measurement zt, its a data associa-
tion nt, the most recent control ut, and where st−1,[m] is the path up to t− 1 of the m-th
particle.

The proposal distribution in (2.11) can be divided into the product of two factors:
the next state distribution p(st|s[m]

t−1, ut) and the probability of the measurement zt.
Obtaining the probability of the measurement requires integration over the possible
landmark locations θnt , which is not possible without approximating the measurement
model g in (2.12) to a linear function:

g (θnt , st) ≈ ẑ
[m]
t +Gθ ·

(
θnt − µ[m]

nt

)
+Gs · (st − ŝ[m]

t) , (2.12)

where ẑ[m]
t represents the predicted measurement:

ẑ
[m]
t = g(θ̂[m]

nt
, ŝ

[m]
t) , (2.13)

ŝ
[m]
t the predicted pose:

ŝ
[m]
t = h(s

[m]
t−1, ut) , (2.14)

and θ̂[m]
n the predicted landmark location:

θ̂[m]
n = µ

[m]
n, t−1. (2.15)

The matrix Gθ in (2.8) is Jacobian of g in respect to θ and Gs the Jacobian of g in
respect to s:

Gs = 5st g(θnt , st)

∣∣∣∣
st=ŝ

[m]
t ; θnt=θ̂

[m]
nt

(2.16)

According to this EKF approximation, one can rewrite the proposal distribution
in (2.12) as a Gaussian with mean and covariance defined by:

Σ[m]
st =

[
GT
sQ

[m]−1
t Gs + P−1

t

]−1

(2.17)

µ[m]
st = Σ[m]

st G
T
sQ

[m]−1
t (zt − ẑ[m]

t) + ŝ
[m]
t , (2.18)

23

2.3. FASTSLAM

respectively, and where Q[m]
t represents the innovation covariance matrix in (2.10).

The new sample distribution in (2.11) is now parameterized as a Gaussian approx-
imation by (2.17) and (2.18). This Gaussian is constructed for each particle in the
particle set St−1, and a new sample is drawn and placed in the temporary particle set
according to:

s
[m]
t ∼ N (st; µ

[m]
st ,Σ

[m]
st). (2.19)

The update of the conditional landmark location estimates remains similar to the
one discussed in 2.3.1, since it is not affected by the changes in the proposal distribution.
However, the same does not apply to the importance weights, which must be updated
to reflect this change.

Recall that the importance weights in (2.6) are defined as the ratio between the target
and proposal distributions, and the asymptotically correct assumption made previously,
that the paths in st−1,[m] were generated according to the target distribution one time
step earlier, remains valid. The importance weight w[m]

t reflecting the new proposal
distribution will be given by:

w
[m]
t =

p(st, [m] | zt, ut, nt)
p(st−1, [m] | zt−1, ut−1, nt−1) p(s

[m]
t | st−1, [m], zt, ut, nt))

. (2.20)

The new proposal distribution has another important ramification concerning the
creation and update of the landmarks estimate. In the previous FastSLAM implemen-
tation, simultaneous observations were incorporated sequentially, each landmark filter
was updated separately and the weight of the resulting particle was the product of the
weights of each individually handled observation.

In this new implementation, because the observations must be incorporated into the
proposal distribution, instead of throwing away the proposal distribution after drawing
the sample, the proposal distribution is kept and updated for each observation, causing
it to shrink. New samples are sequentially generated from the incremental proposal
distribution in order to update the landmark filters and compute the importance weights.

Concerning the creation of new landmarks, [9] refers that observations that generate
new landmarks should be processed last since the new robot pose s[m]

t will be drawn from
the standard motion model in (2.2) which has already been refined by the new proposal
distribution with the incorporation of the previous observations. Furthermore, observa-
tions should always be incorporated in ascending order of range, since observations that

24

CHAPTER 2. THEORETICAL BACKGROUND

lead to new landmarks typically occur at the leading edge of the sensor’s field-of-view,
adding them last ensures a better accuracy of the overall map.

FastSLAM 2.0 outperforms FastSLAM 1.0 in practically every aspect [30], either
by converging, and at a faster rate, when the observation error reaches low values, or
by requiring a smaller amount of particles maintaining the same level of accuracy. In
the end, FastSLAM 2.0 proved the convergence of the algorithm, allowing to achieve
good results for even one particle, yet its implementation can be quite overwhelming
and its particle nature makes it difficult to tune and easy to diverge. That is why
algorithms such as GraphSLAM, that exploit the intuitive graph nature of SLAM and
apply optimization techniques to the SLAM problem emerged, allowing to create maps
with more than 108 features [31]. A broader overview of this new generation of full
SLAM techniques will be given in Section 2.4.

2.4 GraphSLAM

The SLAM algorithms presented up until now are based on filtering techniques,
meaning that they model the SLAM problem as an online state estimation problem,
being the state variables the current position of the agent and the map [13]. This
estimate is then augmented and refined by incorporating new measurements as they
become available. A key disadvantage of these filtering techniques is that data is pro-
cessed and then discarded, making it impossible to revisit all data at the time of map
building. Smoothing approaches, such as GraphSLAM, a state-of-the-art graph-based
SLAM method proposed in [20], address the full SLAM problem, and seek to estimate
the full trajectory of the robot from the full set of measurements along with the map.

The posterior of the full SLAM problem in (1.2) naturally forms a sparse graph, where
nodes represent pose estimates or landmark locations with edges denoting observations
connecting them, see Figure 2.5. This graph leads to a sum of non-linear quadratic
constraints, that when linearized, form a least-squares problem that can be optimized
using standard optimization techniques. Optimizing these constraints yields a maximum
likelihood map and corresponding set of robot poses [31].

Once again, for the sake of this explanation, both observations and odometry esti-
mates will be assumed to be only affected by local Gaussian noise and the data associa-
tions are known. This being said, one can rewrite the measurement model (2.1) and the

25

2.4. GRAPHSLAM

Figure 2.5: Example of an edge connecting the vertex xi and vertex xj. originated from
the measurement zij. From the relative transformation between the two nodes is possible
to compute the error or residual eij(xi, xj) that represents xj seen from xi. An edge is
fully characterized by its error function eij(xi, xj) and by the information matrix Ωij

that accounts for the measurement uncertainty. Figure obtained from [13].

motion model in (2.2) in a general way as:

p(zi|s1:N) = ηi exp
(
(−ei(zi, ẑi))

TΩi et(zi, ẑi)
)
, (2.21)

where ẑi(s1:N) defines the expected measurement associated to the i-th observation or
odometry measurement given the set of poses s1:N :

ẑ(sn, sn+1) = sn+1 	 sn , (2.22)

ei(zi, ẑi) is the residual for measurement j defined by:

e(z, ẑ) = z 	 ẑ = z 	 (sn+1 	 sn). (2.23)

Ωi is the information matrix defined by the inverse of the covariance of either the mea-
surement noise εt or the motion noise δt and ηi is a normalization constant. The operand
	 represents the inverse pose composition, i.e. the inverse of the transformation between
sn and sn+1.

The goal of this graph-based algorithm is to compute a Gaussian approximation
of the posterior (1.2), which involves computing the mean of this distribution as the
configuration of nodes that maximizes the likelihood of the observations Z = {zi} as in:

arg max p(s1:N |Z). (2.24)

26

CHAPTER 2. THEORETICAL BACKGROUND

Knowing that p(Z) is an unknown constant and that p(s1:N) is uniformly distributed [32],
one can rewrite (2.24) using the Bayes’ rule as:

p(s1:N |Z) =
p(Z|s1:N) p(s1:N)

p(Z)
∝ p(Z|s1:N). (2.25)

From (2.21) and (2.25) the GraphSLAM optimization problem can be simplified into:

arg max p(s1:N |Z) = arg min
M∑
i=1

(ei(zi, ẑi))
TΩiei(zi, ẑi) , (2.26)

meaning that the distribution that we seek to minimize is defined by:

x∗ = arg min
x

F(x), where (2.27)

F (x) =
M∑
i=1

(ei(zi, ẑi))
TΩiei(zi, ẑi). (2.28)

If a good initial guess x̆ of the parameters is known, a numerical solution of (2.27)
can be obtained from standard optimization techniques such as the Gauss-Newton [33]
or the Levenberg-Marquardt [34] algorithms, through an approximation of the error
function by its first order Taylor expansion around the current initial guess x̆ according
to:

ei(x̆i + ∆xi) ' ei(x) + Ji∆x , (2.29)

where Ji is the Jacobian of ei(x) computed in x̆. By substituting (2.29) in the error
terms of (2.28) one obtains:

Fk(x̆+ ∆x) ' (ei + Ji∆x)TΩi(ei + Ji∆x)

= eTi Ωiei︸ ︷︷ ︸
ck

+ 2eTi ΩiJi︸ ︷︷ ︸
bk

∆x+ ∆xTJTi ΩiJi︸ ︷︷ ︸
Hk

∆x

= ck + 2bk∆x+ ∆xTHk∆x.

(2.30)

With this local approximation, Eq. 2.28 can be rewritten in a quadratic form by setting
c =

∑
ck, b =

∑
bk and H =

∑
Hk as in:

F(x̆+ ∆x) = c+ 2bT∆x+ ∆xTH∆x. (2.31)

27

2.4. GRAPHSLAM

The quadratic form obtained in (2.31) can then be minimized in ∆x by solving the linear
system:

H∆x∗ = −b , (2.32)

where the matrixH corresponds to the information matrix of the system, being sparse by
nature, meaning that the only non-zero blocks will be the ones connected by a constraint,
resulting in its number of non-zero blocks being twice the number of constraints plus
the number of nodes in the graph.

The linearized solution is then obtained by adding to the initial guess the computed
increments in (2.32) as in:

x∗ = x̆+ ∆x∗. (2.33)

The Gauss-Newton (GN) [33] algorithm iterates through the linearization in (2.31),
the solution in (2.32) and the update step in (2.33), where in every iteration, the previous
solution is used as the linearization point and as initial guess.

The Levenberg-Marquardt (LM) [34] algorithm is a non-linear variant of the Gauss-
Newton that introduces a damping factor and backup actions in order to control and
guarantee the convergence. Instead of solving (2.32) directly, this method solves a
damped version of it according to:

(H + λI)∆x∗ = −b , (2.34)

where λ is the damping factor, responsible for controlling the step size in case of non-
linear surfaces (the larger λ is the smaller are the ∆x). The main advantage of this
algorithm is to dynamically control the damping factor by monitoring the error of the
new configuration after each iteration. If the new error is smaller than the one in the
previous iteration, then the λ is decreased for the next iteration, increasing the rate of
convergence. If, on the other hand, the error is larger than in the previous iteration,
meaning that the optimum solution was surpassed, then the solution is reverted (backup
action) and the λ increased.

GraphSLAM allows to solve the full SLAM problem by mapping the data collected
into a sparse graph. This graph is then converted into an information form representation
using linearization through the first-order Taylor expansion. This approximation can
then be optimized through standard techniques by removing the mapping variables from
the optimization problem resorting to exact transformations.

28

CHAPTER 2. THEORETICAL BACKGROUND

The main advantage of these kind of algorithms is that it allows to accumulate all
data during the mapping process and only resolve it after the robot operation is com-
plete. Furthermore, these optimization techniques allow for an abstraction in the SLAM
problem by splitting the problem into a back-end problem and a front-end one. Most
optimization techniques seek to compute the best map given the constraints (SLAM
back-ends) and they typically rely on efficient implementations of common optimization
algorithms, such as sparse Cholesky factorization [35] or Preconditioned Conjugate Gra-
dients [36] (PCG). In contrast to that, SLAM front-ends seek to interpret the sensor
data to determine the most likely constraint resulting from an observation to obtain
the group of constraints that are the basis of optimization approaches. This problem is
formally known as the data association and will be formally tackled in the next section.

2.5 Data Association

As introduced in Section 1.3.2 in many real-world applications where SLAM tech-
niques are employed, landmarks are not identifiable and the total number of landmarks
cannot be known a priori. Therefore it is required some kind of process, normally of
probabilistic nature, that associates the observations into landmarks in the map in case
they already exist, or create a new one when the observation does not match any of the
already existing ones. This process is usually referred to as the data association and
is widely considered in the literature as one of the most difficult problems in SLAM or
localization. Successful data association involves associating the correct measurement
with the correct state, initializing new tracks and detecting and rejecting spurious mea-
surements [14]. In this Section a brief overview of three of the most broadly used data
association methods will be given.

2.5.1 Maximum Likelihood and Individual Compatibility

The Maximum Likelihood or Nearest Neighbor (ML) [37] is one most basic and
simplest methods for performing data association. The ML is obtained by calculating
the likelihood of each landmark in the map against the individual measurement being
considered. This can be done for any probability distribution as long as the probability
density can be calculated for any possible measurement. This statement holds, since we
consider the measurements to be normally distributed and only affected by Gaussian

29

2.5. DATA ASSOCIATION

noise. The ML is obtained according to:

nt = arg max
nt

p(zt|st, θnt , nt), with (2.35)

p(zt|st, θnt , nt) =
1

(2π)n/2
√
|Qt|

exp

(
−1

2
(zt − ẑt)TQ−1

t (zt − ẑt)
)
, (2.36)

where nt represents the identity of the landmark θnt , zt is the current observation, ẑt the
expected measurement if the landmark θnt was observed at the current position st and
Qt is the innovation covariance matrix as defined in (2.10).

This method can be extended to include the ability to either reject spurious mea-
surements or allow for the possibility of taking measurements of a previously unknown
landmark by using gate validation techniques, such as Individual Compatibility (IC).
This method, by itself, is not a method through which data associations can be chosen.
Instead, it takes out of consideration data associations that are statistically improvable
or incompatible. That is why this method is referred to in the literature as an ambiguity
reduction method as opposed to the ML which is an ambiguity management one.

The gate validation is accomplished by noting that the exponent of the likelihood
function in (2.36), describing the distribution of innovations, is χ2 distributed. This is an
obvious conclusion considering that zt−ẑt naturally forms a Gaussian distribution. These
techniques accept the observations that are inside a fixed region of a χ2 distribution,
and reject the observations that make the innovation fall outside these bounds.

The IC test, otherwise known as the Mahalanobis Distance [38] or the Normalised
Innovation Square (NIS) is then given by:

1

2
(zt − ẑt)TQ−1

t (zt − ẑt) < γn. (2.37)

In (2.37) the quantity γn depends on the dimension n of the innovation vector and
on a fixed threshold that is determined by fixing the region of acceptance of the χ2

distribution (e.g. 95%).
These two methods are normally used in conjunction due to their simplicity and

computational efficiency (O(mn)). However, they have the drawback of failing to recover
the true data association when the validation gates overlap and the observations fall
within this overlapped region, inducing catastrophic failures in the SLAM problem [18].
One way to overcome this limitation is processing the observations jointly, such as the
methods that will be described next, leading to a more robust data association.

30

CHAPTER 2. THEORETICAL BACKGROUND

2.5.2 Sequential Compatibility Nearest Neighbor

A simple way to assure that the resulting data association contains jointly compatible
pairs of observations and landmarks is to use the Sequential Compatibility Nearest
Neighbor method (SCNN) [18]. This method still uses ML and IC, however it implements
a mutual exclusion property for batch data association.

The algorithm is implemented as follows:

Algorithm 1 Sequential Compatibility Nearest Neighbor Algorithm
1: Exclude from the batch all observations that fail the IC test in (2.37);
2: Calculate the ML for the remaining observations according to (2.36);
3: Choose the data association that maximizes the likelihood function (2.35);
4: Exclude from future consideration the data association pair (observation and land-

mark) chosen in 3;
5: Repeat the process starting from 2 until the batch of observation is empty, i.e, until

the maximal hypothesis set of data association is reached;

This methodology, although it allows for processing observation batches while guar-
anteeing the consistency with all pairings, has three major downsides. The first and
more notorious is its computational complexity, requiring O(mn2). The second one is
the fact that the algorithm never reconsiders the decision of pairing the observation with
the most compatible feature. It ignores the fact that these pairs may be incorrect any-
way, due to spurious or unrelated measurements. Finally, the third one concerns the fact
that this implementation cannot maintain a notion of optimality over the entire batch
of data associations. Since measurements are processed one at a time and therefore the
data association choices are based only on the compatibility of a given measurement and
the greedy mutual exclusion requirement [15].

2.5.3 Joint Compatibility Branch and Bound

Reconsideration of the established pairs is a necessary condition to limit the possi-
bility of accepting spurious pairings, enforcing that all pairs belonging to the resulting
hypothesis are jointly compatible. Contrarily to the SCNN, which is a naive application
of the individual measurement data association to the batch of observations, Joint Com-
patibility (JC) is able to maintain a concept of joint optimality across the entire data
association set.

31

2.5. DATA ASSOCIATION

Figure 2.6: Example of tree traverse in the Joint Compatibility Branch and Bound
data association method for a two observation-two landmarks scenario. Figure obtained
from [15].

JC requires a search algorithm to traverse the interpretation tree in search of hy-
potheses that include the largest number of jointly compatible pairings. The reason
being the fact that the probability that spurious measurements are jointly compatible
with all the pairings of a given hypothesis decreases as the number of pairings in the
hypothesis increases.

This method works in the following way:

Algorithm 2 Joint Compatibility Branch and Bound Algorithm
1: From all possible data association pairings, eliminate the ones that do not satisfy

the IC test according to (2.37);
2: Verify if the current pairing satisfies the joint compatibility test (zt − ẑt);
3: If the joint compatibility test is passed, repeat 2. for the next pairing;
4: Case not, halt the search and prune the current path from future consideration.

Move back up the tree, expand and consider the next possible pairing and repeat 2.;

The idea behind JC is expanding the individual compatibility concept to a set of many
measurements and their landmark assignments, traversing the interpretation tree in
search of the hypothesis with the largest number of non-null jointly compatible pairings.

Traversing the tree involves an algorithm that, from the viable solutions, finds the
optimal one while performing as few operations in the minimum time possible. Branch
and Bound [39] solves this problem by bounding its search to only compatible pairings,
using a depth-first search tree, where each level in the tree represents a measurement
within the batch being considered and each node represents a pairing between a landmark
and a measurement in that level (see Figure 2.6). The node may include null assignments

32

CHAPTER 2. THEORETICAL BACKGROUND

meaning the possibility of a spurious measurement may have occurred.
JC resolves two of the pitfalls identified in SCNN at the expense of exponential

computational time, in contrast with the linear with the number of features required by
SCNN, making it difficult to use in real-time applications such as the one in study.

33

2.5. DATA ASSOCIATION

34

Chapter 3

System Integration

This section will cover the specifics of solving the SLAM problem in the context of
the Formula Student competition from the inputs of the algorithm up to the novelties
that were required to obtain satisfactory results

In the first part an overview of the prototype along with the sensors used will be dis-
cussed, followed by a brief presentation of both perception and state estimation pipelines
that feed the SLAM algorithm. Next, the motion models in use will be covered.

Finally, the specifics of both SLAM methods in study will be addressed touching
aspects such as spurious landmark rejection, loop closure detection, transition to local-
ization phase, terminating with the proposed method for data association.

3.1 Vehicle Setup

The base vehicle in use is the ninth prototype developed by the team, the FST09e
in Figure 3.1. This prototype incorporates a full carbon fiber monocoque and complete
aerodynamic package empowered by four permanent magnet synchronous electric mo-
tors, one attached to each wheel, producing a total peak power of 120kW and capable of
accelerating from standstill to 100 km/h in under 2.5 seconds. The motors are supplied
by an 8kW/600V High Voltage (HV) battery.

The FST09e was the most successful and reliable prototype developed and built by
the team so far, scoring in 2019 an amazing 9th place out of 39 teams in the most
prestigious and challenging competition in the world, the Formula Student Germany
(FSG), held at the famous Hockenheimring.

35

3.1. VEHICLE SETUP

Figure 3.1: FST09e team and prototype in Formula Student Germany 2019.

In order to meet the set of challenges posed by the Driverless competition, the pro-
totype was equipped with a series of sensors (see Figure 3.2), in order to replace the
driver’s ability to perceive the environment. The first one being a Light Detection and
Ranging (LiDAR) which calculates the distance to obstacles by targeting them with a
laser beam and measuring the time for the reflected light to return to the receiver. More
specifically, the LiDAR used is a Velodyne VLP-16, which is a 16 channel LiDAR that
has a 100 meter range with 360 degrees of horizontal field-of-view and 30 degrees of
vertical.

The second one, an RGB camera with a CMOS sensor, responsible for collecting
rich information of the environment to complement the LiDAR, which collects sparse
information in the form of a point cloud. The camera chosen is a Lucid Triton TRI032S
with a resolution of 3.2 megapixels coupled to a Kowa 6 mm f/1.8 lens guaranteeing a
horizontal FoV of approximately 65 degrees capturing 2048× 1536 images at 30 FPS.

Additionally, the prototype was also fitted with an Attitude and Heading Reference
System (AHRS) which estimates the accelerations and velocities of the vehicle by fus-
ing Inertial Measurement Unit (IMU) and GPS data. The information retrieved by
these sensors is then forwarded to the autonomous system algorithms which runs on a

36

CHAPTER 3. SYSTEM INTEGRATION

(a) Side view

(b) Top View

Figure 3.2: Location and field-of-view of LiDAR and Camera.

powerful onboard computer equipped with an Intel Core i7-8700T CPU and an NVIDIA
GeForce GTX 1060 Ti GPU.

The vehicle was also equipped with a DC motor with a gearbox attached to the
steering column using a pulley system responsible for transmitting the steering demand
requested by the controller pipeline to the wheels. Additionally, and since safety is a
primary concern when dealing with any kind of racing vehicle, especially autonomous,
the prototype was also fitted with a Remote Emergency System (RES), responsible for
sending the "Go Signal" and, in case of emergency, stopping the vehicle at an average
deceleration greater than 8 m/s2, by deploying the Emergency Brake System (EBS).

3.2 SLAM Inputs

The objective of the Autonomous Pipeline is to process the data retrieved from the
various sensors and output a control command (steering + pedal) to guide the car along
the track.

The Autonomous Pipeline, in Figure 3.3, is based in the ROS (Robot Operating
System) framework [40] and is implemented in its majority in C++ programming lan-

37

3.2. SLAM INPUTS

Figure 3.3: Representation of the Autonomous System Pipeline node structure. The
pipeline is divided into 3 modules (big rectangles): Perception, Estimation and Control,
where each module has a number of nodes (oval boxes) responsible for specific tasks
that communicate with each other by subscribing or publishing topics (small rectangles
connected by arrows) containing useful information.

guage, with the exception being the algorithms that use Neural Networks, which are
implemented using Python.

Parallel to this processing, a SLAM algorithm is responsible for mapping the track
whistle providing a location of the vehicle. This algorithm receives as inputs the cone de-
tections from the Perception Pipeline in Section 3.2.1, and velocities estimates computed
by the State Estimation Pipeline in Section 3.2.2.

3.2.1 Perception Pipeline

The Perception pipeline is responsible for processing the LiDAR raw data and output
the cone detections which are then used in both Path Planning and SLAM algorithms.
The pipeline starts by processing the point cloud and applying a RANSAC (Random
Sample Consensus) algorithm [41] to remove the ground plane. This can be done since
the track surface is assumed to be near planar. After that, a Euclidean Clustering [42]
algorithm is applied to the resulting point cloud which groups into clusters of points that
respect a given predefined maximum distance threshold. These clusters are validated
against the expected cluster that would be formed by a cone, whose dimensions are

38

CHAPTER 3. SYSTEM INTEGRATION

(a) Raw LiDAR point cloud (b) Processed point cloud and sensor fusion output

Figure 3.4: Difference between raw and after process point cloud. The sphere markers
represent the output after the sensor fusion algorithm and the square markers indicate
the color classification obtained through the LiDAR intensity projection.

known. This is done by fitting the resulting clusters to a cylinder with the expected
dimensions of a cone. The clusters that passed this validation are reconstructed to
recover points near the base that might have been removed by the ground removal
algorithm. The before and after results of this processing can be seen in Figure 3.4.

After the LiDAR processing, the cone candidates are projected into the image plane
using the calibration matrices and a rectangular bounding box is constructed around the
cluster in the image. This bounding box is then passed to a Neural Network which clas-
sifies the cone image candidate according to its color (blue, yellow, orange or unknown).
The projection, bounding box and color classification can be seen in Figure 3.5(a).

For redundancy or in case of sensor failure, and since the field-of-view of the camera is
limited when compared to the LiDAR, and considering each cone possesses a known color
pattern, the cone detection candidates are also converted to small mono images. Each
pixel value in the image corresponds to the intensity of the projected point reflection,
which in theory reflects that same color pattern (lighter colors reflect more than darker
ones), see Figures 3.5(b) and 3.5(c). These images are then fed into another Neural
Network which classifies the color pattern and outputs the color estimate (blue, yellow
or unknown).

Finally, a sensor fusion algorithm is applied to eliminate duplicated estimates, i.e. ,

39

3.2. SLAM INPUTS

(a) Point cloud projection into image plane

(b) Blue
cone color
pattern

(c) Yel-
low cone
pattern

Figure 3.5: In (a) the point cloud projection along with the bounding box and resulting
color classification can be seen. In (b) and (c) are shown the known color patterns.
Blue cones are characterized by a Low-High-Low intensity pattern whereas yellow cones
have High-Low-High intensity pattern.

if the color classification is only available on either the LiDAR or the camera, then the
resulting cone defections would be the 3D position of the cluster along with the color
classification from the available sensor, however, if the color classification is available
from both sensors, then the camera one is chosen since is much more likely to be correct.
The output of this algorithm is shown in Figure 3.4(b).

3.2.2 State Estimation Pipeline

The second input required to solve the SLAM problem is an odometry measurement,
these measurements can be wheel encoders, IMU, ground speed sensors, steering angle
sensors, among others. However, all these measurements have an associated error and are
subject to noise. A better way is to combine the information from the available sensors
in order to produce a more accurate odometry estimate. In our autonomous pipeline
this is done through an EKF which combines information from the wheel speeds given
by the wheel encoders, the steering angle and the accelerations measured by the AHRS.

This EKF was presented in a master thesis project [43] developed within the team
regarding a torque vectoring control application for vehicles with wheel motors. The

40

CHAPTER 3. SYSTEM INTEGRATION

(a) vx;

(b) vy;

(c) Yaw Rate;

Figure 3.6: Comparison between AHRS only (red) and EKF (green) velocity estimates
in terms of x, y and yaw rate components.

estimator makes use of the LuGre Tire Model [44], a dynamic model that attempts to
describe the tire-road interactions from a physics point of view, being adequate for both
low and high speeds. Moreover, instead of using a traditional motion model, such as the
Bicycle Model, it uses a four-wheel model derived from the tire model, which is a much
more accurate representation of the true car dynamics.

This implementation delivers better results (see Figure 3.6) than if a single sensor
was used, not only because it combines information from the various available sensors,
but also because it takes advantage of the car’s characteristics and more importantly
in a dynamic way. Besides that, by incorporating various sources of information the
resulting observer is much more robust to unforeseen sensor failures by guaranteeing
that the observability of the system is maintained.

41

3.3. MOTION MODELS

Figure 3.7: Representation of the Unicycle Kinematic Motion Model.

3.3 Motion Models

As described in the previous section, the state estimation pipeline feeds the SLAM
algorithm with the velocities estimates. Although it uses a complex motion model to
provide those estimates, they still need to be integrated in order to provide the po-
sition estimate that the SLAM problem requires. In order to accomplish that, SLAM
algorithms normally rely on simpler representations of the car dynamics, such as the Uni-
cycle Model, the Kinematic Bicycle Model [45], or if one wants to consider the tire-road
interactions the Dynamic Bicycle Model [46].

The latter is discarded from consideration since the state estimation pipeline already
uses a model that takes those interactions into account, meaning that the SLAM pipeline
only requires a simple motion model to integrate those estimates. This being said,
in this section will be presented the two motion models that were considered for the
implementation of the proposed SLAM pipelines, the unicycle and the kinematic bicycle
models.

3.3.1 Unicycle Model

The Unicycle Kinematic model presented in Figure 3.7 uses a unicycle vehicle model
to simulate a simplified car-like vehicle dynamics. This model approximates a vehicle
as a unicycle with a given wheel radius that can spin in place according to the velocity
vector and angular velocity ϕ or yaw rate.

42

CHAPTER 3. SYSTEM INTEGRATION

This model receives as inputs the velocity vector:

v =
√
v2x + v2y , (3.1)

and the yaw rate ϕ. The velocity vector according to the previous robot pose is then
given by:

ẋ = v cos θt−1

ẏ = v sin θt−1

θ̇ = ϕ.

(3.2)

The next robot position estimate is obtained by integrating the calculated velocities
in (3.2) in each component over the time elapsed between measurements and adding
them to the current vehicle position estimate, such as:

xt = xt−1 + ẋ ·∆t

yt = yt−1 + ẏ ·∆t

θt = θt−1 + θ̇ ·∆t.

(3.3)

Although very simple and thus easy to implement, this model has a big drawback
when it comes to the application in study. The unicycle model considers the vehicle by
the center of its axis which in turn means that it implies that the vehicle turns relative
to that point. This is not true in our prototype since the vehicle has two axles separate
by a fixed wheel-base, being only one of them capable of steering, which means that
the rotation is around a point somewhere close to the middle of the wheel-base, a point
otherwise known as the center-of-rotation.

3.3.2 Kinematic Bicycle Model

The Kinematic Bicycle Model, in Figure 3.8 solves the pitfall posed by the Unicycle
Model by combining the front and rear wheels of the four-wheel model into a two-wheel
model, hence the name bicycle mode. By doing this approximation we are left with two
wheels to deal with, instead of four and only one steering angle, instead of two.

For the simplicity of this explanation it is assumed that the robot has a lumped mass
that acts at the center-of-mass or center-of-gravity (CG) and the no-slip condition, i.e.,
there is no lateral or longitudinal slip in the tire, meaning that we can consider that the
velocity vector acts in the same direction as the wheels are pointing.

43

3.3. MOTION MODELS

Figure 3.8: Representation of the Kinematic Bicycle Model.

Since the robot is represented by its CG, one can define lf as the distance from the
CG to the front axle and lr as the distance from this point to the rear axle. Furthermore,
the sum of these distances gives the total wheel-base L. The model receives as inputs
the velocity vector:

v =
√
v2x + v2y , (3.4)

and the steering angle δ.
The speeds of the robot in the terms of x, y and angular components are given by:

ẋ = cos(β + θt−1) · v

ẏ = sin(β + θt−1) · v

θ̇ =
tan δ · cos β

L
· v ,

(3.5)

where β represents the slip angle, more specifically the difference between the velocity
vector and the current orientation of the vehicle and its defined by:

β = arctan
lr · tan δ

L
. (3.6)

The next position of the robot can then be calculated by once again integrating the
speeds obtained in (3.5) over the time between measurements and adding the result to
the current position, such as described in (3.3).

This model is much more suitable for our application since it considers not only the
dimensions of the car but also takes as input the steering angle. Moreover, at the speeds
we are running, the assumption regarding the no-slip condition and the consideration of
the CG as the point of rotation are both guaranteed.

44

CHAPTER 3. SYSTEM INTEGRATION

Figure 3.9: Detailed FastSLAM architecture used to fuse landmark observations from
camera and LiDAR with velocity estimates into a coherent map and pose within the
map. The dashed line visually demonstrates which parts of the algorithm are computed
on a per-particle basis.

3.4 FastSLAM Implementation

Both FastSLAM 1.0 and 2.0 algorithms were implemented from scratch using the
ROS framework and C++ programming language, according to the formulation in [9].
Although the general idea behind the algorithm was maintained, some changes were
required in order for it to work in the Formula Student environment, mainly in the weight
calculation, loop closure detection and transition to localization phase. This Section will
cover the specifics of our FastSLAM implementations, discarding the differences between
them but focusing on the common aspects of both algorithms.

As described in Section 3.2, the pipeline (see Figure 3.9) receives as inputs the cone
detections and velocity estimates. Cone detections are only accepted provided they were
observed a minimum number of times and whose color classification is known.

Every time a new set of landmark observations is received, the particle filter is up-
dated. The observations are in the vehicle reference frame z = [xl, yl]

T meaning that the
origin is located at the current position of the vehicle s = [xv, yv, θv]

T . The position of
the landmarks within the local reference frame can be described in terms of Cartesian

45

3.4. FASTSLAM IMPLEMENTATION

coordinates θ = [xj,l, yj,l]
T or the respective cylindrical coordinates θ = [rj, θj]

T , which
are the ones used by the measurement model in (2.1) or in terms of global map frame
θ = [xj,g, yj,g]

T . The transformations between these coordinates are given by:(
xj,l
yj,l

)
=

(
rj cos θj
rj sin θj

)
(3.7)

(
rj
θj

)
=

(√
x2j,l + y2j,l

arctan(yj,l, xj,l)

)
(3.8)(

rj
θj

)
=

(√
(xj,g − xv)2 + (yj,g − yv)2

arctan(yj,g − yv, xj,g − xv)− θv

)
. (3.9)

The update starts by propagating the particle poses using the motion model without
noise, where the delay between the timestamp of the cone detections and the last pose
estimate is compensated. After that the data association process takes place, where
the observations are either mapped to existing landmarks in the map or generate new
ones. This process will be fully discussed in Section 3.6. In the case of FastSLAM
2.0, the pose estimate is then enhanced using an EKF which is iteratively refined with
the incorporation of the matched observations. This requires a linearization of the
measurement model in (2.1) according to the first order Taylor expansion. The Jacobian
of g with respect to the the pose s in (2.16) according to the motion model in use is
defined by:

Gs =

(
−
√
δ2x + δ2y · δx −

√
δ2x + δ2y · δy 0

−δy δx −
(
δ2x + δ2y

)) , (3.10)

where δx and δy are the x and y distances between the i-th landmark in the global map
frame and the current pose estimate.

With the now known data associations for every particle, the EKF of each landmark
can be updated using (2.9). Again, the measurement model g needs to be linearized
being the Jacobian with respect to the landmark location θ in (2.8):

Gθ =

(√
δ2x + δ2y · δx

√
δ2x + δ2y · δy

−δy δx

)
(3.11)

Lastly, the weight w[m]
t of each particle can be calculated, based on the likelihood of the

data association process, the number of new landmarks and a penalty for every landmark
that is in the field-of-view (FoV) but is not observed or whose mapped color does not

46

CHAPTER 3. SYSTEM INTEGRATION

agree with the observation [47], according to:

wk = wk−1l
vwkbw

γ
c

∏
wk,n , (3.12)

where wk−1 is the particle weight in the previous update, l the weight assigned to new
landmarks and v the number of new landmarks, wb the penalty for landmarks that were
in sensor range but were not observed and k the number of not observed landmarks,
wc penalizes color mismatches for all γ landmarks whose color does not match the
associated observation and wk,n are the importance weights, in (2.6) or (2.20), of all
matched landmarks.

Naturally, the particle weight variance increases over time and therefore resampling
is enforced once the effective sample size Neff of the particles drops below a certain
threshold:

N
[k]
eff =

1∑
(w[k])

2 . (3.13)

To detect the loop closure a simple finite state machine is used [48], where each
landmark possesses a loop closure state that can take one of the following states: land-
markInView, landmarkLeftView, landmarkReturned. When landmarks are created they
are initialized in the landmarkInView state, and when they left the FOV they transition
to the landmarkLeftView state. The landmarkReturned state is triggered when land-
marks that were in the landmarkLeftView state return to the FOV with a heading not
deviating more than a threshold from the initial observed heading.

This state machine is implemented along with a statistics function that keeps track,
for each set of observations, of the number of landmarks that were observed or missed
according to the expected FoV of the sensors. If a landmark is missed more times than
the ones it was observed then it is deleted. The loop closure is detected when the number
of returned landmarks is equal or greater than the number of seen plus missed landmarks
multiplied by a percentage factor and the standard deviation of all particles drops below
a fixed threshold.

After loop closure detection the SLAM algorithm switches to a localization phase
using the map of the highest particle weight which is copied to the remaining particles
in the particle set. The map is fixed by disabling the landmark EKF update and both
track boundaries and centerline are computed. In order to localize the car, a smooth
pose update is given by taking the weighted average over all the particles, essentially
turning the SLAM algorithm into a Monte Carlo Localization problem.

47

3.5. GRAPHSLAM IMPLEMENTATION

Figure 3.10: Detailed GraphSLAM architecture used to fuse landmark observations from
camera and LiDAR with velocity estimates into a coherent map and pose within the map.

3.5 GraphSLAM Implementation

Similarly to the FastSLAM implementation, the GraphSLAM implementation, in
Figure 3.10, receives as inputs the validated cone detections from the perception pipeline
along with velocity estimates from the state estimation pipeline. Here some novelties
to the original algorithm proposed in [13] were introduced by including an EKF for
estimating the landmark locations [49] and by performing a multi-level optimization
allowing this SLAM algorithm to be used exclusively for localization.

The algorithm is callback-based meaning that an update is performed every time
a new set of cone detections is received, although based on the ROS framework which
allows for nodes to be run at specific rates. For every new set of cone detections, a
pose is sampled from the motion model, and a new odometry vertex is created along
with an edge connecting the previous pose vertex to the new one. The error function
in (2.23) is defined as the relative transformation between the two pose estimates sa and

48

CHAPTER 3. SYSTEM INTEGRATION

sb, according to:

est,t+1(st, st+1) = zt,t+1 	 hst,t+1(st, st+1) (3.14)
hst,t+1(st, st+1) = sa 	 sb

=

 (xa − xb) cos θb + (ya − yb) sin θb)
−(xa − xb) sin θb + (ya − yb) cos θb)

θb − θa

 .
(3.15)

After sampling the pose, the data association takes place, observations that lead to
the creation of new landmarks are directly added to the graph with the creation of the
respective vertex according to (3.20) in the position in which they were observed along
with an edge connecting the new landmark to the pose from which it was observed.
Again, the error function is defined as the relative transformation between the landmark
and pose vertexes, as in:

eθt,i(st, θi) = zt,i − hθt,i(st, θi) (3.16)

hθt,i(st, θi) =

(
(xst − xθi) cos θst + (yst − yθi) sin θst
−(xst − xθi) sin θst + (yst − yθi) cos θst

)
. (3.17)

The sum of all constraints in (2.28) that we seek to minimize can then be rewritten
has:

F (x) = xT0 Ωox0 +
∑
t

(xst − h(ut, x
s
t−1))

TP−1
t (xst − h(ut, x

s
t−1))

+
∑
t

∑
i

(zt,i − g(θt, x
s
t))

TR−1
t (zt,i − g(θt, x

s
t)) ,

(3.18)

where xT0 Ωox0 is the anchoring constraint fixing the problem to the global reference
frame. This constraint is needed because all the other relative constraints have no
information about the global reference frame, meaning that if an anchoring point is not
establish, the cost function would be invariant to rigid-body transformations, resulting
in the system of equations being undetermined. In Figure 3.11 is presented an example
of the graph constructed along with its associated constraints.

The first difference to the original algorithm comes when the observations are mapped
to already existing landmarks. In such cases, following the idea of the FastSLAM, this
implementation also uses an EKF per landmark to iteratively refine the position esti-
mate of the landmarks has they suffer multiple observations, according to (2.9). This

49

3.5. GRAPHSLAM IMPLEMENTATION

Figure 3.11: Example of the GraphSLAM sparse-graph representation. The edges con-
necting the nodes define the constraints with an associated error that will be minimized
during the optimization process.

is particularly useful because otherwise, the optimization process would try to minimize
the error according to the first position in which the landmark was observed, which is not
necessarily the most accurate. Observations that lead to new landmarks typically tend
to occur at the limit of the sensor range, where the uncertainty associated to the mea-
surement is higher. These new landmarks become closer and are observed multiple times
as the car navigates through them, meaning that would be illogical not to consider those
observations, with smaller error, to improve the estimate. In such cases, the position
of the landmark is updated in the graph following the standard EKF update equations
and a new edge connecting the pose and the corresponding landmark is added to the
graph. Once again the error function is defined as the relative transformation between
the current pose and landmark position generated by the observation, as in (3.16).

The second particularity of the implementation is the multi-level optimization. A
feature that is available since the back-end of this GraphSLAM application is based on
the g2o library [32]. The idea is, just like in the FastSLAM approach, to split the SLAM
problem into two, one global localization problem and N landmark mapping problems
conditioned to the pose estimate. To do that the optimization is divided into two levels.
The first handles the localization problem and the second the landmark location problem.
After the update of the landmark locations, the local graph formed by the pose estimate
and the observations is optimized. The optimized pose is then recovered and used to

50

CHAPTER 3. SYSTEM INTEGRATION

improve the estimate sampled from the motion model. When loop closure is detected,
using the same statics function and state machine as in Section 3.4, the position of the
landmarks in the second level is optimized. The optimized locations of the landmarks
are then saved, the EKF update is disabled and their corresponding vertexes set fixed.

The algorithm transitions then to a localization phase where only the first level
optimization, concerning the pose estimate, is performed. In this phase new observations
do not lead to the creation of new landmarks, they are instead only assigned to already
existing ones but do not improve their estimate since the second level graph is set fixed
and the EKF update disabled.

3.6 Data Association Implementation

As described earlier the track is delimited by cones of identical size, only distinguish-
able by their color or color pattern, placed on similar looking asphalt. This invalidates
the use of descriptors to aid the data association process.

The first algorithm used by the team to solve the SLAM problem was based on a
Rao-Blackwellized particle filter that uses the maximum likelihood principle to solve
the data association problem on a per-particle basis, which naturally allows for multi-
hypothesis data association. This process, although reliable, can become computational
expensive depending on the number of simultaneous observations because it involves
for each observation loop through all the possible landmark assignments in the map
searching for the one that best fits the observation. In order to overcome this drawback
a data association method that combines the maximum likelihood principle with tracking
information from the visible landmarks was implemented.

The idea behind the method is to avoid looping through all the landmarks calcu-
lating the value of the likelihood function. Instead, landmarks that possess tracking
information indicating that they are unlikely to correspond to the observation are im-
mediately discarded. Landmarks that do not possess tracking information are tested
in terms of likelihood against the observations according to (2.35). It should be added
that all observations that fail the individual compatibility test (2.37) are considered as
spurious measurements and discarded.

The tracking part of the data association process is implemented at the level of the
observations in the perception pipeline, running in parallel with the ML to save on

51

3.6. DATA ASSOCIATION IMPLEMENTATION

computational time. The tracking is done in a Iterative Closest Point (ICP) manner, by
comparing each new set of observations with the previous one using the Bhattacharyya
distance [50]:

DB(zp, zq) =
1

4
ln

(
1

4

(
σ2
zp

σ2
zq

+
σ2
zq

σ2
zp

+ 2

))
+

1

4

(
(µzp − µzq)2

σ2
zp + σ2

zq

)
, (3.19)

where µ and σ are the mean and covariance associated to the observations zp and zq,
respectively.

The Bhattacharyya distance is preferred to the Mahalanobis distance in (2.37) be-
cause it explicitly incorporates the covariance of the observation. This is particularly
useful since noise levels of the observations often exceed the minimum expected distance
between neighboring cones [49], and because it solves the problem raised by the IC test
when the validation gates overlap. In such cases, where observations have similar means
but different standard deviations, the Mahalanobis distance would erratically, tend to
zero, whereas the Bhattacharyya distance grows depending on the difference between
the standard deviations.

If the observations are deemed to be the same by comparison of the result in (3.19)
with a fixed threshold, they are saved with a unique index and passed to the SLAM
pipeline as cone detections, where the EKF update takes place according to (2.9). On
the other hand, in the SLAM pipeline when landmarks are created according to:(

xj,g
yj,g

)
=

(
xv + rj cosϕv + θj
yv + rj cosϕv + θj

)
, (3.20)

using the ML method the index of the observation generating the landmark is saved in
its data structure.

Later, when new observations are being evaluated during the data association process
this index is compared to the one stored in the landmark data structure and in case of a
match the observation is set to be of that specific landmark and the maximum likelihood
process does not need to take place, see Figure 3.12.

The tracking algorithm also takes care of the color assignment estimate. It works
by maintaining a counter for every matched observation of the number of times each
color C ∈ {yellowCone, blueCone, orangeCone, unknown} was observed, such as in Fig-
ure 3.12. The color with most observations is chosen and passed to the SLAM pipeline
along with the observation.

52

CHAPTER 3. SYSTEM INTEGRATION

Figure 3.12: Example of the Data Association Process. Above each marker is possible
to see the tracking ID of each observation and the number of observations for each color
possibility. Bellow the marker is possible to see the SLAM information regarding the
particular landmark, such as, the tracking ID with which it was created and the number
of times it was observed.

53

3.6. DATA ASSOCIATION IMPLEMENTATION

54

Chapter 4

Results

This chapter will focus on the analysis in terms of accuracy and performance of both
proposed pipelines (FastSLAM 2.0 and GraphSLAM) as well as the data association
method in study. The initial implementation of the FastSLAM 1.0 will be compared
against the new SLAM implementations in study, and the data association method will
be compared against the individual methods presented in Section 2.5.

The pipelines were tested both using simulation and real data acquired during test-
ing. The simulation results were obtained using an adapted version of the FSSIM [47],
developed by the AMZ Driverless team from ETH Zurich. This simulator is based on
Gazebo [51], however, it uses a first principle model instead of the Gazebo’s included
physics engine. This allows matching the simulation to the actual vehicle performance.
Regarding the SLAM inputs, FSSIM does not simulate perception data due to the large
computational requirements, instead, it generates direct cone detections affected by noise
based on the expected error and FOV of the sensors. The same goes for the velocity
estimates which are derived from the ground truth pose and disturbed with noise to
better simulate real scenarios. Furthermore, a custom model of the real car was used
for testing and the tracks generated from the ground truth data.

A key requirement for validating the accuracy of any SLAM application is having
a ground truth map of the track. This is trivial in simulation however the same does
not go for real scenarios. The ground truth of the tracks used for testing was obtained
using a Total Station Theodolite in Figure 4.1(a) connected to a GNSS-RTK network.
The device was stationed at the origin of the track and the distances and bearings
to every cone in the track were measured with a sub-centimeter precision in terms of

55

(a) Total Station
Theodolite

(b) Target

Figure 4.1: Device used to obtain the tracks ground truth. This device is connected
to GNSS-RTK network for better accuracy and is capable of measuring distance and
bearing to targets such as in (b) with millimetric/degree precision.

distance and millidegree angular precision. These measurements were then converted to
Cartesian coordinates to facilitate the comparison to the maps from the SLAM pipelines
and added to the simulator for initial testing and validation of the algorithms.

The parameters used for testing both FastSLAM and GraphSLAM implementations
are presented in Table 4.1.

Table 4.1: SLAM Parameters

FastSLAM GraphSLAM
Number of Particles 50 N/A

New Landmark Threshold 0.02 0.02
Loop Closure Factor 0.8 0.8

Rr 0.4 m 0.4 m
Rθ 4◦ 4◦

Px 0.5 m 0.1 m
Py 0.5 m 0.5 m
Pϕ 5◦ 1◦

56

CHAPTER 4. RESULTS

4.1 Simulation Results

Before the algorithms could be tested in the real setup they were validated in simula-
tion. These tests were conducted in order to evaluate the performance of the algorithms,
but also for tuning of parameters and validation of the loop closure and localization fea-
tures.

(a) FastSLAM 1.0 (b) FastSLAM 2.0

(c) GraphSLAM

Figure 4.2: Simulation results in the 2018 FSG track.

The simulation results for the three algorithms in study, showed in Figure 4.2, held

57

4.2. REAL SCENARIO RESULTS

an accuracy in terms of RMSE of 0.96 m, 0.38 m and 0.31 m for the FastSLAM 1.0,
FastSLAM 2.0 and GraphSLAM algorithms, respectively.

In Figure 4.2, it is notorious the improvement introduced by the new sample distri-
bution proposed in FastSLAM 2.0 when compared to FastSLAM 1.0. However, Graph-
SLAM holds the best result overall, benefiting from the fact of being a full SLAM
technique. Furthermore, in terms of computational efficiency, the GraphSLAM imple-
mentation is considerably faster than the remaining filtering approaches, with an average
computational time for one iteration of 0.00115 ms against the 0.0153 ms of FastSLAM
1.0 and 0.027 ms of FastSLAM 2.0. The lower performance in FastSLAM 2.0 is justifiable
by the added complexity of sampling the pose based on the observations and processing
observations that generate new landmarks last, instead of incrementally. It should be
noticed that these higher values of computational time have no implication in the overall
algorithm performance since cone observations are processed at a rate of 10 Hz ≈ 0.1 ms.

4.2 Real Scenario Results

With proven results in terms of synthetic data, the implementations were also tested
regarding their mapping, localization and data association performance using the pro-
totype autonomous capabilities in real competition scenarios.

4.2.1 Mapping Results

In these tests were evaluated the overall map accuracy as well as individual cone
class accuracy in two different tracks. The maps were acquired at a constant speed of
3.5 m/s, the minimum imposed by the competition regulations [3]. The maps obtained
are plotted against the ground truth in Figures 4.3, 4.4 and 4.5.

In Figures 4.3, 4.4 and 4.5 are evident the improvement from the first implementation
of SLAM within the team (FastSLAM 1.0 in Fig.4.3) to FastSLAM 2.0 in Fig.4.4 and
even more when compared to proposed GraphSLAM implementation in Fig.4.5.

In order to quantify this improvement, the root mean squared error (RMSE) per cone
class, in Figures 4.6, 4.7 and 4.8, as a function of the travelled distance was calculated,

58

CHAPTER 4. RESULTS

according to:

RMSE =

√√√√ 1

n

n∑
i=1

∥∥∥θ̂i − θi∥∥∥2. (4.1)

From the analysis of the Figures 4.6, 4.7 and 4.8 is notorious the trend evidenced in
the simulation results in Section 4.1, the error decreases from FastSLAM 1.0 to 2.0 and
even more in the case of GraphSLAM. Moreover, the propagation of the error due to the
drift in the pose estimate is evident in the FastSLAM implementations, see Figures 4.6
and 4.7. In addition, in Figure 4.8 the role of the optimization in the GraphSLAM
implementation is well demonstrated by reducing drastically the map overall error after
loop closure detection from 1.23 m to 0.35 m for track 1 and from 1.37 m to 0.42 m in
case of track 2.

The total RMSE of the maps obtained with each algorithm is presented in Table 4.2.

Table 4.2: Total RMSE of each implementation per track

Total RMSE [m]
FastSLAM 1.0 FastSLAM 2.0 GraphSLAM

Track 1 1.44 0.96 0.35
Track 2 1.68 1.06 0.41

Through the analysis of Table 4.2 one can see that the error values confirm the
values expected from the simulation results. Furthermore, the current GraphSLAM
implementation represents an improvement in terms of mapping accuracy of 75% over
the initial FastSLAM 1.0 implementation and 62% over FastSLAM 2.0, whistle being
considerably more efficient and robust.

59

4.2. REAL SCENARIO RESULTS

(a) Track 1 (b) Track 2

Figure 4.3: FastSLAM 1.0 maps against ground truth map

(a) Track 1 (b) Track 2

Figure 4.4: FastSLAM 2.0 maps against ground truth map

(a) Track 1 (b) Track 2

Figure 4.5: GraphSLAM maps against ground truth map

60

CHAPTER 4. RESULTS

(a) Track 1 (b) Track 2

Figure 4.6: FastSLAM 1.0 map RMSE over distance.

(a) Track 1 (b) Track 2

Figure 4.7: FastSLAM 2.0 map RMSE over distance.

(a) Track 1 (b) Track 2

Figure 4.8: GraphSLAM map RMSE over distance.

61

4.2. REAL SCENARIO RESULTS

4.2.2 Localization Results

In this section will be presented the results regarding the localization capabilities of
the proposed pipelines. In the absence of a way to estimate the real position of the car
along the track, the validation was done by overlapping the uncorrected and corrected
trajectories over the ground truth map and by performing a qualitative analysis of the
results.

The test was conducted using a previously attained map of the track, during one
the autocross runs, and utilizing only the localization capabilities of the algorithms. In
Figure 4.9 are shown the results in terms of localization for the most demanding track
used in testing.

(a) Centerline (b) FastSLAM 1.0

(c) FastSLAM 2.0 (d) GraphSLAM

Figure 4.9: Comparison of the localization results (in red) against the trajectory obtained
from raw odometry data (in green). In (a) is represented, in orange, the path that the
car is following.

From the analysis of Figure 4.9 several important conclusions can be taken. The
first is the point from which the pose estimate obtained from the raw odometry mea-

62

CHAPTER 4. RESULTS

sures, i.e. , without correction, starts to divert, caused by the error associated to the
odometry measurements accumulated over time, causing a drift in the pose. The sec-
ond is the improvement in FastSLAM 2.0 (Fig.4.9(c)) pose estimate over FastSLAM 1.0
(Fig.4.9(b)), thanks to the new sample distribution that takes into account the current
observations to enhance the pose sampled from the motion model. The third and last
conclusion is the superior results attained using the proposed method for localization
using GraphSLAM in Figure 4.9(d). Albeit the results are not perfect, mainly due to
the fact that GPS data was not available at the time of testing, the pose estimate using
the proposed multi-level optimization is closer to the center of the track, which is the
computed trajectory that the prototype tries to follow, in Figure 4.9(a).

4.2.3 Data Association Results

The data association accuracy of the proposed implementation in Section 3.6 was
compared to the individual methods presented in Section 2.5 by mapping the observa-
tions in the global map frame connected to the associated landmarks.

The results of this test for the data association methods in study are present in
Figure 4.10. Just by observing this figure, it is noticeable that the errors in the data
association process are significantly reduced when using JCBB instead of the ML+IC
method. On the other hand, when comparing the proposed data association method
combining ML, IC and tracking information to JCBB, a smaller amount of data asso-
ciation errors is also noticeable. Putting the results into quantitative measures the ML
method held an accuracy of 91%, the JCBB of 95% and the proposed method of 98%.
The accuracy of the data association process was obtained by evaluating if the distance
between the observation and the associated landmark was within the expected radius of
a cone. A discrimination of these accuracy measurements is presented in Table 4.3.

Table 4.3: Accuracy of the different data association methods

ML + IC JCBB Proposed Method
Correct Data Associations 2029 2118 2186
Miss Data Associations 201 112 44

The data association errors are clearly evidenced in Figures 4.6, 4.7 and 4.8, cor-
responding to the spikes seen in the error plots of the different cone classes. The

63

4.2. REAL SCENARIO RESULTS

(a) Maximum Likelihood + Individual Compatibility (b) Joint Compatibility Branch and Bound

(c) Maximum Likelihood + Tracking Information

Figure 4.10: Accuracy of the data association methods in real data. The green dots
correspond to observations mapped into the world frame, red dots correspond to the
landmarks in the map and the edges represent the mapping between observations and
landmarks after the data association process.

GraphSLAM algorithm using the proposed data association method had a maximum
data association error of 1.6 m, whereas FastSLAM 1.0 in the same conditions reached
1.76 m. The larger data association error in FastSLAM does not necessarily evidence
an error in the data association algorithm itself, but instead, is a consequence of the
correlation between the error in the pose estimate and the mapping of the landmarks.

In terms of computational time, as expected the JCBB was the slowest one due to
the exponential complexity associated to the traversing of the tree. The best result was
achieved by the ML + IC method, which is to be expected since the proposed method

64

CHAPTER 4. RESULTS

for data association also makes use of the ML + IC, but is then combined with the
tracking information from the perception pipeline. The average computational achieved
by using ML was 12.7µs, 24.4µs for the proposed method and 131µs for the JCBB.

65

4.2. REAL SCENARIO RESULTS

66

Chapter 5

Conclusions

At the beginning of this thesis, we set as objective providing FST with a SLAM
algorithm that held consistent and accurate results. To accomplish that, the natural
progression was transitioning from FastSLAM 1.0 to 2.0 which, even so, did not deliver
satisfactory results, something that is evident in the mapping results presented in Sec-
tion 4.2.1. Bearing in mind this conclusion, a full SLAM approach was implemented and
tested which proven, not only, much more accurate but also much more reliable, robust
and easy to tune, given our current setup.

Given all the constraints faced during the development and writing of this thesis, both
for the team and companies that support our work and are the basis of our existence, the
results accomplished are very satisfactory and fulfill the objectives set at the beginning of
this thesis. More importantly, valuable lessons were learned, as well as much knowledge
was acquired regarding SLAM applications in the Formula Student context, which will
hopefully translate into even bigger improvements for future cars.

A complete autonomous pipeline was developed from scratch using only three basic
sensors, one 16-layer LiDAR, one RGB camera and one IMU. This is nothing compared
to the sensors setups that other teams are using, many times comprising two or three
cameras and at least two LiDARs. Nevertheless, we are able to achieve good perfor-
mances regarding mapping speeds and recover an accurate map that can be used in the
subsequent laps. Building this prototype required much more than programming skills.
A good simulation performance means nothing until it is translated to the real platform.
The latter required mechanical and electrical knowledge far beyond the scope of this
thesis, and even this course.

67

5.1. FUTURE WORK

5.1 Future Work

Regarding future work, if we revisit the localization results in 4.2.2, it is clear that
this is a weak point of our current pipeline. Future work should include testing of
different locations of our current ARHS, combining it with another one for estimating y
velocities more accurately or even incorporate the IMU available in the LiDAR.

Additionally, SLAM could provide much more information than a simple map for
the next laps. For example, the detections from the perception pipeline are noisy and
irregular, one way to explore the SLAM capabilities would be for the path planning al-
gorithm to use the current data associations from the SLAM pipeline as cone detections.
This would make the algorithm much more stable and robust to miss-classifications, not
to mention that the cone detections from the SLAM pipeline are far more accurate since
are being constantly improved by the EKFs. Another hypothesis would be to use the
SLAM algorithm as a path planner. Given that our current implementation is based
on Support Vector Machines (SVM), and that SLAM uses the same algorithm to find
the center path of the computed map, it would be logical to incrementally generate this
path and feed it to the control pipeline instead of generating the center line only after
loop closure detection.

5.2 Final Remarks

As a final remark, I would like to express my gratitude to all my colleagues at
FST Lisboa, especially to the Autonomous Systems department. This project and this
competition provide an incredible opportunity to develop not only hard skills and gain
experience, but also soft skills, such as teamwork. Everyday we challenged ourselves to
solve problems that were many times out of our field of knowledge. Together we failed,
learned from it and explored our limits individually and as a team. More support and
acknowledgment from this institution would play a big role in what is, first and foremost,
a student initiative with far-reaching potential for our future as engineers, individuals,
and ultimately, the image of this learning institution.

68

CHAPTER 5. CONCLUSIONS

Figure 5.1: Autonomous Systems department after the first fully autonomous ride.

69

5.2. FINAL REMARKS

70

Bibliography

[1] Javier Ibañez-Guzman, Christian Laugier, John-David Yoder, and Sebastian Thrun.
Autonomous driving: Context and state-of-the-art, 2012. 1

[2] Johannes Betz, Alexander Wischnewski, Alexander Heilmeier, Felix Nobis, Tim
Stahl, Leonhard Hermansdorfer, and Markus Lienkamp. A software architecture
for an autonomous racecar. In 2019 IEEE 89th Vehicular Technology Conference
(VTC2019-Spring), pages 1–6. IEEE, 2019. 1

[3] Formula Student Germany. FS Rules 2020, 2019. 2, 4, 58

[4] Formula Student Germany. FSG Competition Handbook 2021, 2021. 4, 5

[5] Lisboa, FST. Autonomous Design Report - FST10d, 2020. 5, 6

[6] Michael Montemerlo and Sebastian Thrun. Simultaneous localization and map-
ping with unknown data association using fastslam. In 2003 IEEE International
Conference on Robotics and Automation (Cat. No. 03CH37422), volume 2, pages
1985–1991. IEEE, 2003. 6, 15, 16, 17

[7] Guillaume Bresson, Zayed Alsayed, Li Yu, and Sébastien Glaser. Simultaneous
localization and mapping: A survey of current trends in autonomous driving. IEEE
Transactions on Intelligent Vehicles, 2(3):194–220, 2017. 6

[8] Alexander Liniger, Alexander Domahidi, and Manfred Morari. Optimization-based
autonomous racing of 1: 43 scale rc cars. Optimal Control Applications and Methods,
36(5):628–647, 2015. 6

71

BIBLIOGRAPHY

[9] Michael Montemerlo and S Thrun FastSLAM. A Scalabale Method for the simulta-
neous localizaton and mapping problem in robotics, volume 27. Springer, 2007. 6,
14, 16, 19, 22, 24, 45

[10] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit, et al. Fast-
slam: A factored solution to the simultaneous localization and mapping problem.
Aaai/iaai, 593598, 2002. 7, 18, 19

[11] Randall C Smith and Peter Cheeseman. On the representation and estimation of
spatial uncertainty. The international journal of Robotics Research, 5(4):56–68,
1986. 7, 14, 15

[12] Sebastian Thrun. Probabilistic robotics, volume 45. ACM New York, NY, USA,
2002. 7, 8, 9

[13] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, and Wolfram Burgard. A
tutorial on graph-based slam. IEEE Intelligent Transportation Systems Magazine,
2(4):31–43, 2010. 8, 9, 14, 25, 26, 48

[14] Juan Nieto, Jose Guivant, Eduardo Nebot, and Sebastian Thrun. Real time data
association for fastslam. In 2003 IEEE International Conference on Robotics and
Automation (Cat. No. 03CH37422), volume 1, pages 412–418. IEEE, 2003. 9, 10,
29

[15] Aron Jace Cooper. A comparison of data association techniques for Simultaneous
Localization and Mapping. PhD thesis, Massachusetts Institute of Technology, 2005.
9, 10, 17, 31, 32

[16] Wu Zhou, E Shiju, Zhenxin Cao, and Ying Dong. Review of slam data associa-
tion study. In 2016 International Conference on Sensor Network and Computer
Engineering. Atlantis Press, 2016. 10

[17] Michael Montemerlo. FastSLAM: A Factored Solution to the Simultaneous Localiza-
tion and Mapping Problem With Unknown Data Association. PhD thesis, Carnegie
Mellon University, 2003. 10, 14, 19, 22, 23

72

BIBLIOGRAPHY

[18] José Neira and Juan D Tardós. Data association in stochastic mapping using the
joint compatibility test. IEEE Transactions on robotics and automation, 17(6):890–
897, 2001. 10, 30, 31

[19] Sebastian Thrun, Michael Montemerlo, Daphne Koller, Ben Wegbreit, Juan Nieto,
and Eduardo Nebot. Fastslam: An efficient solution to the simultaneous localization
and mapping problem with unknown data association. Journal of Machine Learning
Research, 4(3):380–407, 2004. 13, 15, 16, 18

[20] Feng Lu and Evangelos Milios. Globally consistent range scan alignment for envi-
ronment mapping. Autonomous robots, 4(4):333–349, 1997. 13, 25

[21] Philippe Moutarlier and Raja Chatila. An experimental system for incremental
environment modelling by an autonomous mobile robot. In Experimental Robotics
I, pages 327–346. Springer, 1990. 14

[22] Yaakov Bar-Shalom, Peter K Willett, and Xin Tian. Tracking and data fusion,
volume 11. YBS publishing Storrs, CT, USA:, 2011. 15, 21

[23] Jose E Guivant and Eduardo Mario Nebot. Optimization of the simultaneous lo-
calization and map-building algorithm for real-time implementation. IEEE trans-
actions on robotics and automation, 17(3):242–257, 2001. 16

[24] John J Leonard and Hans Jacob S Feder. A computationally efficient method for
large-scale concurrent mapping and localization. In Robotics Research, pages 169–
176. Springer, 2000. 16

[25] Sebastian Thrun, Daphne Koller, Zoubin Ghahramani, Hugh Durrant-Whyte, and
Andrew Y Ng. Simultaneous mapping and localization with sparse extended infor-
mation filters: Theory and initial results. In Algorithmic Foundations of Robotics
V, pages 363–380. Springer, 2004. 16

[26] Jun S Liu and Rong Chen. Sequential monte carlo methods for dynamic systems.
Journal of the American statistical association, 93(443):1032–1044, 1998. 17

[27] Arnaud Doucet, Nando De Freitas, Kevin Murphy, and Stuart Russell. Rao-
blackwellised particle filtering for dynamic bayesian networks. arXiv preprint
arXiv:1301.3853, 2013. 17

73

BIBLIOGRAPHY

[28] Kevin P Murphy. Bayesian map learning in dynamic environments. Advances in
Neural Information Processing Systems, 12:1015–1021, 1999. 18

[29] Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Monte carlo
localization for mobile robots. In Proceedings 1999 IEEE International Conference
on Robotics and Automation (Cat. No. 99CH36288C), volume 2, pages 1322–1328.
IEEE, 1999. 19

[30] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit, et al. Fast-
slam 2.0: An improved particle filtering algorithm for simultaneous localization and
mapping that provably converges. In International Joint Conference on Artificial
Intelligence, pages 1151–1156, 2003. 22, 25

[31] Sebastian Thrun and Michael Montemerlo. The graph slam algorithm with appli-
cations to large-scale mapping of urban structures. The International Journal of
Robotics Research, 25(5-6):403–429, 2006. 25

[32] Giorgio Grisetti, Rainer Kümmerle, Hauke Strasdat, and Kurt Konolige. g2o: A
general framework for (hyper) graph optimization. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), Shanghai, China,
pages 9–13, 2011. 27, 50

[33] William H Press, H William, Saul A Teukolsky, William T Vetterling, A Saul, and
Brian P Flannery. Numerical recipes 3rd edition: The art of scientific computing.
Cambridge university press, 2007. 27, 28

[34] Jorge J Moré. The levenberg-marquardt algorithm: implementation and theory. In
Numerical analysis, pages 105–116. Springer, 1978. 27, 28

[35] Yanqing Chen, Timothy A Davis, William W Hager, and Sivasankaran Rajaman-
ickam. Algorithm 887: Cholmod, supernodal sparse cholesky factorization and up-
date/downdate. ACM Transactions on Mathematical Software (TOMS), 35(3):1–14,
2008. 29

[36] Erik F Kaasschieter. Preconditioned conjugate gradients for solving singular sys-
tems. Journal of Computational and Applied mathematics, 24(1-2):265–275, 1988.
29

74

BIBLIOGRAPHY

[37] Shalom Y Bar, TE Fortmann, et al. Tracking and data association. PhD thesis,
Academic press Cambridge, 1988. 29

[38] Roy De Maesschalck, Delphine Jouan-Rimbaud, and Désiré L Massart. The ma-
halanobis distance. Chemometrics and intelligent laboratory systems, 50(1):1–18,
2000. 30

[39] Tim Bailey. Mobile Robot Localisation and Mapping in Extensive Outdoor Environ-
ments. PhD thesis, University of Sydney, 2002. 32

[40] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source robot operating system. In
ICRA workshop on open source software, volume 3, page 5. Kobe, Japan, 2009. 37

[41] Konstantinos G Derpanis. Overview of the ransac algorithm. Image Rochester NY,
4(1):2–3, 2010. 38

[42] Christian Darken and John Moody. Fast adaptive k-means clustering: some em-
pirical results. In 1990 IJCNN international joint conference on neural networks,
pages 233–238. IEEE, 1990. 38

[43] Nuno Salgueiro. Torque vectoring control of an electric vehicle with in-wheel motors.
PhD thesis, Instituto Superior Técnico, 2021. 40

[44] C Canudas De Wit, Hans Olsson, Karl Johan Astrom, and Pablo Lischinsky. A
new model for control of systems with friction. IEEE Transactions on automatic
control, 40(3):419–425, 1995. 41

[45] Philip Polack, Florent Altché, Brigitte d’Andréa Novel, and Arnaud de La Fortelle.
The kinematic bicycle model: A consistent model for planning feasible trajectories
for autonomous vehicles? In 2017 IEEE intelligent vehicles symposium (IV), pages
812–818. IEEE, 2017. 42

[46] Jason Kong, Mark Pfeiffer, Georg Schildbach, and Francesco Borrelli. Kinematic
and dynamic vehicle models for autonomous driving control design. In 2015 IEEE
Intelligent Vehicles Symposium (IV), pages 1094–1099. IEEE, 2015. 42

75

BIBLIOGRAPHY

[47] Juraj Kabzan, Miguel I Valls, Victor JF Reijgwart, Hubertus FC Hendrikx, Claas
Ehmke, Manish Prajapat, Andreas Bühler, Nikhil Gosala, Mehak Gupta, Ramya
Sivanesan, et al. Amz driverless: The full autonomous racing system. Journal of
Field Robotics, 37(7):1267–1294, 2020. 47, 55

[48] Miguel I Valls, Hubertus FC Hendrikx, Victor JF Reijgwart, Fabio V Meier, Inkyu
Sa, Renaud Dubé, Abel Gawel, Mathias Bürki, and Roland Siegwart. Design of an
autonomous racecar: Perception, state estimation and system integration. In 2018
IEEE international conference on robotics and automation (ICRA), pages 2048–
2055. IEEE, 2018. 47

[49] Leiv Andresen, Adrian Brandemuehl, Alex Honger, Benson Kuan, Niclas Vödisch,
Hermann Blum, Victor Reijgwart, Lukas Bernreiter, Lukas Schaupp, Jen Jen
Chung, et al. Accurate mapping and planning for autonomous racing. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 4743–4749. IEEE, 2020. 48, 52

[50] Anil Bhattacharyya. On a measure of divergence between two statistical populations
defined by their probability distributions. Bull. Calcutta Math. Soc., 35:99–109,
1943. 52

[51] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. In 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3,
pages 2149–2154. IEEE, 2004. 55

76

